pyspark 中dataframe 转 pandas时报错:Can only use .dt accessor with datetimelike values

解决Pyspark中date类型向Pandas转化时的错误。通过将Pyspark的date类型转换为timestamp类型,确保与Pandas的时间类型兼容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用pyspark将spark的dataframe转化为pandas的dataframe时,如果frame中"date"格式的数据,会报错:

AttributeError: Can only use .dt accessor with datetimelike values

验证数据确实是"date“格式的数据:

 

原因&解决方案

pyspark的datetime格式无法与pandas的时间类型格式datetime直接对应。

需要转化为pyspark的timestamp格式:

from pyspark.sql.functions import to_timestamp
for f in [f[0] for f in ret2.dtypes if f[1]=='date']:
    ret = ret.withColumn(f, F.to_timestamp(F.col(f), 'yyyy-MM-dd'))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值