计算乘法式的思路

  1. #include <iostream>
  2. #include <string>
  3. #include <vector>
  4. #include <algorithm>
  5. #include <sstream>
  6. #include <list>
  7. using namespace std;
  8. double stod(string &in)
  9. {
  10.     stringstream sstr(in);
  11.     double d;
  12.     sstr>>d;
  13.     return d;
  14. }
  15. int main(int argc,char **argv)
  16. {
  17.     string meast;
  18.     cout<<"请输入尺寸:";
  19.     cin>>meast;
  20.     vector<double> vec;
  21.     string::iterator iter=meast.begin();
  22.     string::iterator begin=meast.begin();
  23.     while((iter=find(iter,meast.end(),'*'))!=meast.end())
  24.     {
  25.         string s(begin,iter);
  26.         vec.push_back(stod(s));
  27.         begin=iter+1;
  28.         ++iter;
  29.     }
  30.     string lastsize(begin,iter);
  31.     vec.push_back(stod(lastsize));
  32.     double size=1;
  33.     if(vec.size()!=4)
  34.     {
  35.         cerr<<"错误的尺寸输入"<<endl;
  36.         size=0;
  37.     }
  38.     else
  39.     {
  40.         for(vector<double>::iterator vit =vec.begin();
  41.             vit!=vec.end();++vit)
  42.         {
  43.             size*=*vit;
  44.         }
  45.     }
  46.     cout<<"Size:"<<size<<endl;
  47. }
内容概要:本文档详细介绍了基于MATLAB实现的多头长短期记忆网络(MH-LSTM)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在通过融合MH-LSTM对时序动态的细致学习和Transformer对全局依赖的捕捉,显著提升多变量时间序列预测的精度和稳定性。文档涵盖了从项目背景、目标意义、挑战与解决方案、模型架构及代码示例,到具体的应用领域、部署与应用、未来改进方向等方面的全面内容。项目不仅展示了技术实现细节,还提供了从数据预处理、模型构建与训练到性能评估的全流程指导。 适合人群:具备一定编程基础,特别是熟悉MATLAB和深度学习基础知识的研发人员、数据科学家以及从事时间序列预测研究的专业人士。 使用场景及目标:①深入理解MH-LSTM与Transformer结合的多变量时间序列预测模型原理;②掌握MATLAB环境下复杂神经网络的搭建、训练及优化技巧;③应用于金融风险管理、智能电网负荷预测、气象预报、交通流量预测、工业设备健康监测、医疗数据分析、供应链需求预测等多个实际场景,以提高预测精度和决策质量。 阅读建议:此资源不仅适用于希望深入了解多变量时间序列预测技术的读者,也适合希望通过MATLAB实现复杂深度学习模型的开发者。建议读者在学习过程中结合提供的代码示例进行实践操作,并关注模型训练中的关键步骤和超参数调优策略,以便更好地应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值