Boosting由来
Kearns & Valiant (1984)
PAC学习模型
提出问题:
1) 强学习算法:存在一个多项式时间的学习算法以识别一组概念,且识别的正确率很高。
2) 弱学习算法:识别一组概念的正确率仅比随机猜测略好。
3) 弱学习器与强学习器的等价问题。如果两者等价,只需找到一个比随机猜测略好的学习算法,就可以将其提升为强学习算法。
Boosting
概念
- 用来提高弱分类算法准确度的方法
- 一种把若干个分类器整合为一个分类器
步骤
将其他的弱分类算法作为基分类算法放于Boosting 框架中,通过Boosting框架对训练样本集的操作,得到不同的训练样本子集,用该样本子集去训练生成基分类器;每得到一个样本集就用该基分类算法在该样本集上产生一个基分类器,这样在给定训练轮数 n 后,就可产生 n 个基分类器,然后Boosting框架算法将这 n个基分类器进行加权融合,产生一个最后的结果分类器,在这 n个基分类器中,每个单个的分类器的识别率不一定很高,但他们联合后的结果有很高的识别率,这样便提高了该弱分类算法的识别率。
缺点
重大的缺陷,即他们都要求事先知道弱分类算法分类正确率的下限,这在实际问题中很难做到。为解决这个问题,提出Adaboost。
Adaboost(adaptive boosting自适应增强)
最后的分类器Σ是由数个弱分类器(weak classifier)组合而成的,相当于最后m个弱分类器来投票决定分类,而且每个弱分类器的“话语权”α不一样。
它的自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个基本分类器。同时,在每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数。
步骤
- 初始化训练数据的权值分布。如果有N个样本,则每一个训练样本最开始时都被赋予相同的权值:1/N。
- 训练弱分类器。具体训练过程中,如果某个样本点已经被准确地分类,那么在构造下一个训练集中,它的权值就被降低;相反,如果某个样本点没有被准确地分类,那么它的权值就得到提高。然后,权值更新过的样本集被用于训练下一个分类器,整个训练过程如此迭代地进行下去。
- 将各个训练得到的弱分类器组合成强分类器。各个弱分类器的训练过程结束后,加大分类误差率小的弱分类器的权重,使其在最终的分类函数中起着较大的决定作用,而降低分类误差率大的弱分类器的权重,使其在最终的分类函数中起着较小的决定作用。换言之,误差率低的弱分类器在最终分类器中占的权重较大,否则较小。