背景
在各类业务场景中,分表键的选择至关重要,它会因业务场景的不同而产生显著差异。
以大家熟知的订单表为例,在日常业务中,用户查询订单是极为高频的操作。为了优化查询效率,我们通常会基于用户的 ID 进行分表。这样一来,当用户发起订单查询请求时,原本复杂的多表查询就会转化为单表查询,大大提高了查询速度和系统性能。
然而,如果以时间为维度的查询成为高频场景,例如经常需要查询某一年的订单情况,那么按照订单的创建时间进行分表就显得尤为必要。我们可以以年为维度,将数据分散存储在不同的表中,这样在进行时间维度的查询时,能够更精准地定位到所需的数据表,提高查询效率。
那么,当我们基于创建时间的时间戳进行分表时,ShardingSphere 的配置规则该如何设置呢?遗憾的是,目前官方文档并未直接给出基于时间戳分表的具体案例。
本文将聚焦于这一问题,详细介绍此场景下的配置方案。
方案
官方文档虽然没有直接地给出基于时间戳进行分表的案例,但是,官方文档中提到了的分片规则中的INLINE模式,这个模式支持基于行表达式的分片算法。