由线性回归代码思考流程

一、数据加载

一般这个流程中,我们会对数据进行裁剪,数据增强,图像的亮度等等一些操作来增加数据的多样性。将图像数据转化为矩阵,等待传入模型中

二、计算梯度获取w,b

根据线性公式来设计梯度公式,将初始化的w,b,数据,学习率等传入梯度公式中计算新的w,b

三、梯度更新

循环计算梯度进行更新w,b

四、计算损失

根据计算出的w,b带入到线性公式中得到的y值,与实际的y值通过均方差公式计算损失率,获得最好的效果

五、获得w,b,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值