概述
协同过滤(Collaborative Filtering)是推荐领域非常重要的算法策略,由于它的领域无关性,应用非常广泛。本文解决的一个问题是:在训练数据集合中,只有用户的隐式反馈,例如用户的浏览行为、收藏行为等,没有用户直接打分行为;即只有用户偏好行为,对于用户不喜欢的商品没有数据支持;基于以上数据本文提出一种隐式因子模型(Factor Model)解决该问题,并给出优化求解。
问题建模
矩阵分解
推荐问题解决的问题归纳为给用户u推荐物品i,并且满足用户偏好、新奇度和多样性等。协同过滤和矩阵分解是常用的方法。
协同过滤
按照用户和物品维度可以分为基于用户的协同过滤和基于物品的协同过滤,主要思想是计算用户与用户、物品与物品以及用户和物品的相关度。以物品协同过滤举例,将物品表示为用户维度的向量,这样就可以计算物品之间的相似度,则用户与物品相似度为
rui=∑j∈Ski:usijruj∑j∈Ski:usij
其中
Si:u