【每周一文】Collaborative Filtering for Implicit Feedback Datasets(2008)

本文探讨了在推荐系统中处理隐式反馈数据的协同过滤方法。通过矩阵分解技术,建立隐式反馈因子模型,解决无明确负面反馈的问题。模型引入喜好和置信度变量,以优化求解用户和物品的低维表示。实验表明,该模型在处理如浏览和点击行为等隐式反馈时,表现优于其他方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

协同过滤(Collaborative Filtering)是推荐领域非常重要的算法策略,由于它的领域无关性,应用非常广泛。本文解决的一个问题是:在训练数据集合中,只有用户的隐式反馈,例如用户的浏览行为、收藏行为等,没有用户直接打分行为;即只有用户偏好行为,对于用户不喜欢的商品没有数据支持;基于以上数据本文提出一种隐式因子模型(Factor Model)解决该问题,并给出优化求解。

问题建模

矩阵分解

推荐问题解决的问题归纳为给用户u推荐物品i,并且满足用户偏好、新奇度和多样性等。协同过滤和矩阵分解是常用的方法。

协同过滤

按照用户和物品维度可以分为基于用户的协同过滤和基于物品的协同过滤,主要思想是计算用户与用户、物品与物品以及用户和物品的相关度。以物品协同过滤举例,将物品表示为用户维度的向量,这样就可以计算物品之间的相似度,则用户与物品相似度为

rui=jSki:usijrujjSki:usij
其中 Si:u
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值