MNIST 数据集的CSV的格式的使用(ANN)

1:简单单层ANN 网络实现MNIST 数据集的分类

Mnist数据集可以算是学习深度学习最常用到的了。这个数据集包含70000张手写数字图片,分别是60000张训练图片和10000张测试图片,

每个图片都是2828个像素点,数据集/会把一张图片的数据转成一个2828=784的一维向量存储起来。
里面的图片数据如下所示,每张图是0-9的手写数字黑底白字的图片,存储时,黑色用0表示,白色用0-1的浮点数表示。
每张图片是一个28*28像素点的0 ~ 9的灰质手写数字图片,黑底白字,图像像素值为0 ~ 255,越大该点越白。

2:利用CSV 进行图片的读取

每个图片都是2828个像素点,数据集/会把一张图片的数据转成一个2828=784的一维向量存储起来。里面的图片数据如下所示,每张图是0-9的手写数字黑底白字的图片,存储时,黑色用0表示,白色用0-1的浮点数表示。

import pandas as pd
import torch
from torch.utils.data import DataLoader, TensorDataset
from torch import nn, optim

dir = 'E:/MNIST_CSV/'

# 读取数据
train_data = pd.read_csv(dir+'mnist_train.csv')
y_train = train_data.iloc[:, 0]  # 第一列是标签
X_train = train_data.iloc[:, 1:]  # 其余列是像素值

# 转换为张量
X_train = torch.tensor(X_train.values, dtype=torch.float32)
y_train = torch.tensor(y_train.values, dtype=torch.long)

# 创建 DataLoader
train_dataset = TensorDataset(X_train, y_train
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值