Segment Any Medical-Model (SAMM)在3D slicer上部署

参考:

GitHub - bingogome/samm: A 3D Slicer integration to Meta's SAM.

https://www.cnblogs.com/odesey/p/17322413.html

一、下载代码仓库和权重文件

https://github.com/facebookresearch/segment-anything.git
https://github.com/bingogome/samm.git
https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth

二、安装依赖库

pip install opencv-python matplotlib onnxruntime onnx

三、安装3D slicer

https://download.slicer.org/

四、安装3D slicer 依赖库

slicer.util.pip_install("pyyaml")
slicer.util.pip_install("pyzmq")

 五、将segment-anything相关文件拷贝到对应目录

1、将.\segment-anything\segment_anything拷贝到.\samm\segment_anything
2、将sam_vit_h_4b8939.pth拷贝到.\samm\samm-python-terminal\samm-workspace\sam_vit_h_4b8939.pth

六、安装3Dslicer 插件

 七、启动服务

./samm/samm-python-terminal/sam_server.py

 八、使用samm

 

有一个小技巧,记得重采样影像

### Medical SAM 医疗信息系统的概述 Medical SAM 是一系列基于 Segment Anything Model (SAM) 的改进版本,专门针对医学图像处理领域设计。这些模型通过不同的方式优化了原始 SAM,在保持高精度的同时提高了效率和适用范围。 #### 参数高效微调技术的应用 更新 SAM 所有参数的过程既耗时又计算密集,因此不适合广泛部署[^1]。为此,研究者们开发了多种参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)技术来仅调整一小部分参数。其中一种解决方案是由 Wu 等提出的 Medical SAM Adapter (Med-SA),该方案利用低秩自适应(Low-Rank Adaptation, LoRA)模块并将其嵌入到特定的位置,同时维持预训练好的 SAM 参数不变。这种方法不仅减少了资源消耗,而且在多个医学图像分割任务上的表现超过了原有的 SAM 及其他最先进的方法。 ```python class LowRankAdapter(nn.Module): def __init__(self, input_dim, output_dim, rank=4): super().__init__() self.down_proj = nn.Linear(input_dim, rank) self.up_proj = nn.Linear(rank, output_dim) def forward(self, hidden_states): return self.up_proj(F.relu(self.down_proj(hidden_states))) ``` #### 集成于临床工具中的实现 另一个值得注意的发展是 Segment Any Medical-Model (SAMM),这是由约翰斯·霍普金斯大学 Biomechanical and Image Guided Surgical Systems 实验室创建的一个综合性框架。此项目成功地把 Meta 开发的通用分割算法 SAM 整合到了 3D Slicer 平台之中,后者是一款专为三维医学影像分析而设的专业软件。这种组合使得医生能够更便捷地获取精确的解剖结构划分,进而支持诊断决策制定、病情跟踪以及疗效评价等工作流程[^2]。 #### 性能提升的新一代模型 最新的进展来自牛津大学团队发布的 Medical SAM 2 (MedSAM-2),这款升级后的系统进一步提升了对于复杂生物组织特征的理解能力,并且在多器官自动识别方面取得了显著进步。通过对 BTCV 数据集中超过十种不同类型的病变区域实施定量测试,结果显示 MedSAM-2 达到了前所未有的准确性水平,超越了许多现有的顶级竞争对手,包括但不限于 nnU-Net、TransUNet 和 Swin UNETR 等知名架构[^3]。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值