大语言模型原理与书生大模型提示词工程实践_哔哩哔哩_bilibili
一、大模型学习之路
网络(transform)->预训练(大量的数据集,理解语义关系)->微调(了解任务、价值观对齐,通用大模型)->领域微调(垂直领域)->智能体(完成实际任务)
prompt:为模型提供输入,用以引导AI模型其生成特定的输出。
prompt engineering(提示工程):设计调整输入prompts,来改善模型性能。或控制其输出结果的技术。一系列的引导。
二、提示词
提示原则:
- 指令要清晰:描述清晰、扮演角色
- 提供参考内容:提供示例
- 复杂的任务拆分成子任务
- 给InternLM思考的时间(给出过程):思维连CoT,让大模型一步一步去思考,给出推理步骤
- 使用外部工具(也是可以参考的条件):使用格式符区分语义
- 系统性能测试变化(给标准的答案):使用情感和物质激励
提示词框架:
- CRISPE框架:复杂冗长
- Capacity and Role(能力与角色):希望InternLM扮演怎样的角色
- Insight(洞察力):背景信息和上下文(坦率的说我觉得用Context更好)
- Statement(指令):希望InternLM做什么
- Personality(个性):希望InternLM以什么风格或者方式回答你
- Experiment(尝试):要求InternLM提供多个答案
- CO-STAR框架:结构明确,方便管理迭代;
- Context(背景):提供任务背景信息
- Objective(目标):定义需要LLM执行的任务
- Style(风格):指定希望LLM具备的写作风格
- Tone(语气):设定LLM回复的情感基调
- Audience(观众):表明回复的对象
- Response(回复):提供回复格式
推理模型时代,还需要提示工程么?deepseek(强化学习约束大模型搜索空间),提示词简介,提供必要的细节,非推理模型处理简单任务会比推理模型做的更好。
- 简单任务使用非推理模型
- 保持prompt清晰简洁
- 避免不必要的few-shot样例
- 使用system prompt设置角色和格式
- 约束输出中推理的程度与深度
三、人格化的提示设计框架LangGPT
心理学对提示设计的启示
- 提示中的认知框架
- 避免在提示中产生认知偏差:
- 提示中情感的作用:情感激励、或物质激励
- 心理语言学与提示设计:措辞,自然人类对话
- 通过人类思维模式引导AI回复:特定的思维模式。
深度“催眠”LLM:引导(Induction)->深化(Deepening)->暗示(suggesting)->唤醒(Termination)
工具调用与MCP(Model Context Protocol,模型上下文协议)
四、提示自动设计工具Minstrel
分析(指令)、设计(根据激活模块生成具体内容 )、测试(模拟器)