第五期书生大模型实战营-《L0G1-书生大模型提示词实践》

大语言模型原理与书生大模型提示词工程实践_哔哩哔哩_bilibili

一、大模型学习之路

网络(transform)->预训练(大量的数据集,理解语义关系)->微调(了解任务、价值观对齐,通用大模型)->领域微调(垂直领域)->智能体(完成实际任务)

prompt:为模型提供输入,用以引导AI模型其生成特定的输出。

prompt engineering(提示工程):设计调整输入prompts,来改善模型性能。或控制其输出结果的技术。一系列的引导。

二、提示词

提示原则:

  1. 指令要清晰:描述清晰、扮演角色
  2. 提供参考内容:提供示例
  3. 复杂的任务拆分成子任务
  4. 给InternLM思考的时间(给出过程):思维连CoT,让大模型一步一步去思考,给出推理步骤  
  5. 使用外部工具(也是可以参考的条件):使用格式符区分语义
  6. 系统性能测试变化(给标准的答案):使用情感和物质激励

提示词框架:

  • CRISPE框架:复杂冗长
    • Capacity and Role(能力与角色):希望InternLM扮演怎样的角色
    • Insight(洞察力):背景信息和上下文(坦率的说我觉得用Context更好)
    • Statement(指令):希望InternLM做什么
    • Personality(个性):希望InternLM以什么风格或者方式回答你
    • Experiment(尝试):要求InternLM提供多个答案
  • CO-STAR框架:结构明确,方便管理迭代;
    • Context(背景):提供任务背景信息
    • Objective(目标):定义需要LLM执行的任务
    • Style(风格):指定希望LLM具备的写作风格
    • Tone(语气):设定LLM回复的情感基调
    • Audience(观众):表明回复的对象
    • Response(回复):提供回复格式

推理模型时代,还需要提示工程么?deepseek(强化学习约束大模型搜索空间),提示词简介,提供必要的细节,非推理模型处理简单任务会比推理模型做的更好。

  • 简单任务使用非推理模型
  • 保持prompt清晰简洁
  • 避免不必要的few-shot样例
  • 使用system prompt设置角色和格式                                    
  • 约束输出中推理的程度与深度

三、人格化的提示设计框架LangGPT

心理学对提示设计的启示

  • 提示中的认知框架
  • 避免在提示中产生认知偏差:
  • 提示中情感的作用:情感激励、或物质激励
  • 心理语言学与提示设计:措辞,自然人类对话
  • 通过人类思维模式引导AI回复:特定的思维模式。

深度“催眠”LLM:引导(Induction)->深化(Deepening)->暗示(suggesting)->唤醒(Termination)

工具调用与MCP(Model Context Protocol,模型上下文协议)

四、提示自动设计工具Minstrel

分析(指令)、设计(根据激活模块生成具体内容 )、测试(模拟器)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值