📌 大家好,我是智界软体库,每天分享智能且好用的开源项目,如果本篇文章对您有所帮助,请帮我点个小赞小收藏小关注吧,谢谢喲!😘😘😘
博主声明:本文旨在提供技术指导和灵感,不涉及任何具体软件或工具的推广。
一、简介:
想在自己的Windows电脑运行最新国产大模型DeepSeek?本教程手把手教你绕过环境配置的深坑,20分钟完成从零部署到对话测试!
二、截图示例:
三、安装教程:
一、安装Ollama(可以承载DeepSeek模型的程序)
1、打开官网下载程序:Ollama(此程序需要网络可以访问github)
如访问不了github,可以下载我从官网下载好的安装包:点我下载安装包
注意:下载的安装包直接安装会默认在C盘安装,如需在其他盘安装可以在需要安装的目录打开cmd控制台,输入以下命令后回车执行
#E:\AI\Ollama是你要安装的目录
OllamaSetup.exe /DIR=E:\AI\Ollama
2、新建文件夹model,并在当前目录运行cmd
3、运行以下命令下载模型数据 ollama pull deepseek-r1:1.5b
如需下载更多模型可以看文章结尾
下载完成后
4、运行此命令启动模型 ollama run deepseek-r1:1.5b
二、下载/启动模型命令大全
#下载不同的模型数据,注意越大的数据需要的电脑配置越高,可根据自己需求下载
ollama pull deepseek-r1:1.5b
ollama pull deepseek-r1:7b
ollama pull deepseek-r1:8b
ollama pull deepseek-r1:14b
ollama pull deepseek-r1:32b
ollama pull deepseek-r1:70b
ollama pull deepseek-r1:671b
#启动不同模型数据命令
ollama run deepseek-r1:1.5b
ollama run deepseek-r1:7b
ollama run deepseek-r1:8b
ollama run deepseek-r1:14b
ollama run deepseek-r1:32b
ollama run deepseek-r1:70b
ollama run deepseek-r1:671b
三、ollama基本命令
# 查看已下载模型
ollama list
# 拉取模型
ollama pull 模型名称
# 运行模型
ollama run 模型名称
# 卸载模型
ollama rm 模型名称
# 退出聊天
/bye
不同参数量模型本地部署硬件要求
根据 Ollama 平台提供的 DeepSeek-R1 模型信息,以下是不同参数量模型的本地部署硬件
要求和适用场景分析。
注:部分数据基于模型通用需求推测,具体以实际部署测试为准。
1. DeepSeek-R1-1.5B
CPU: 最低 4 核(推荐 Intel/AMD 多核处理器)
内存: 8GB+
硬盘: 3GB+ 存储空间(模型文件约 1.5-2GB)
显卡: 非必需(纯 CPU 推理),若 GPU 加速可选 4GB+ 显存(如 GTX 1650)
场景:
低资源设备部署(如树莓派、旧款笔记本)
实时文本生成(聊天机器人、简单问答)
嵌入式系统或物联网设备
2. DeepSeek-R1-7B
CPU: 8 核以上(推荐现代多核 CPU)
内存: 16GB+
硬盘: 8GB+(模型文件约 4-5GB)
显卡: 推荐 8GB+ 显存(如 RTX 3070/4060)
场景:
本地开发测试(中小型企业)
中等复杂度 NLP 任务(文本摘要、翻译)
轻量级多轮对话系统
3. DeepSeek-R1-8B
硬件需求: 与 7B 相近,略高 10-20%
场景:
需更高精度的轻量级任务(如代码生成、逻辑推理)
4. DeepSeek-R1-14B
CPU: 12 核以上
内存: 32GB+
硬盘: 15GB+
显卡: 16GB+ 显存(如 RTX 4090 或 A5000)
场景:
企业级复杂任务(合同分析、报告生成)
长文本理解与生成(书籍/论文辅助写作)
5. DeepSeek-R1-32B
CPU: 16 核以上(如 AMD Ryzen 9 或 Intel i9)
内存: 64GB+
硬盘: 30GB+
显卡: 24GB+ 显存(如 A100 40GB 或双卡 RTX 3090)
场景:
高精度专业领域任务(医疗/法律咨询)
多模态任务预处理(需结合其他框架)
6. DeepSeek-R1-70B
CPU: 32 核以上(服务器级 CPU)
内存: 128GB+
硬盘: 70GB+
显卡: 多卡并行(如 2x A100 80GB 或 4x RTX 4090)
场景:
科研机构/大型企业(金融预测、大规模数据分析)
高复杂度生成任务(创意写作、算法设计)
7. DeepSeek-R1-671B
CPU: 64 核以上(服务器集群)
内存: 512GB+
硬盘: 300GB+
显卡: 多节点分布式训练(如 8x A100/H100)
场景:
国家级/超大规模 AI 研究(如气候建模、基因组分析)
通用人工智能(AGI)探索
通用建议
量化优化:使用 4-bit/8-bit 量化可降低显存占用 30-50%。
推理框架:搭配 vLLM、TensorRT 等加速库提升效率。
云部署:70B/671B 建议优先考虑云服务以弹性扩展资源。
能耗注意:32B+ 模型需高功率电源(1000W+)和散热系统。
本文完结!
祝各位点赞收藏的大佬身体健康,万事如意,发财暴富💖💖💖!!!