Variational Inference 笔记 from UCB CS 285 Sergey Levine

这篇博客深入探讨了变分推断在潜变量模型中的应用,通过神经网络来逼近后验概率分布。作者介绍了如何利用证据下界(ELBO)优化模型,并讨论了在训练过程中更新神经网络参数的技巧,包括参数化技巧。博客还提到了变分自编码器(VAE)的原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Part 1 

Probabilistic models with latent variable models, evidence variable and query variable:

我们要这么想 p(x), p(z) 和 p(x|z):       (下图右上角 应该是 mu_nn(z), sigma_nn(z) )

这里牵扯到了第一个神经网络。

现在要明确,我们的目标是build一个model,尽可能的fit the data,or to say:

 

怎么train latent variable models?用

但是p(x)有两种展开方式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值