目录
一、背景
在互联网数据传输领域,拥塞控制算法始终扮演着关键角色。从1980年代的Tahoe算法到现代云计算场景中的新型算法,这一领域经历了三次重大技术迭代:
- 基于丢包的算法(Reno/Cubic)
- 基于延迟的算法(Vegas)
- 基于主动探测的算法(BBR)
传统算法在应对现代高速网络时逐渐暴露出局限性,Google于2016年提出的BBR(Bottleneck Bandwidth and Round-trip propagation time)算法,通过主动探测网络路径特性,实现了革命性的性能突破。实测数据显示,BBR可将YouTube全球平均延迟降低53%,网络吞吐量提升4-25倍。
二、BBR算法原理
1.1 基础数学模型
BBR基于Maxwell方程组建立网络模型,关键公式为:
其中:
- BtlBW(瓶颈带宽):路径中最小的链路带宽
- RTprop(双向传播延迟)
- BDP(带宽延迟积)
1.2 四阶段状态机
BBR通过状态机动态调整发送速率:
1.3 核心优势解析
- 主动探测机制:每10秒测量RTprop,每1秒更新BtlBW
- 抗丢包性:不依赖丢包作为拥塞信号
- 缓冲区对抗:通过Drain阶段主动控制缓冲区膨胀
三、与传统算法对比
3.1、Cubic算法局限性
// 传统Cubic窗口增长函数
d