leetcode【207】【Depth-first Search】Course Schedule【c++版本】

本文探讨了如何判断一组课程是否能够顺利完成的问题。通过分析课程先决条件,利用深度优先搜索(DFS)来检测是否存在学习顺序上的闭环,进而确定所有课程是否可以按要求修读完毕。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hello,各位,我又回来了。做了一学期废物,这赶紧回来找找感觉了。

问题描述:

There are a total of numCourses courses you have to take, labeled from 0 to numCourses-1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

 

Example 1:

Input: numCourses = 2, prerequisites = [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take. 
             To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: numCourses = 2, prerequisites = [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take. 
             To take course 1 you should have finished course 0, and to take course 0 you should
             also have finished course 1. So it is impossible.

源码:

分析了一下题目,有点像数据结构中的拓扑排序。

思路就是用DFS的方法找一下给出的prerequisites中是否有环,有的话就不行,没有的话就返回True。

用visitnum表示访问序列中曾经出现过的元素,若当前元素在visitnum中则说明存在环。

visit [i] = true 表示以prerequisites中第 i 个pair为开头的序列已经访问过了,无需再访问。

class Solution {
public:
    bool candp(vector<vector<int>>& prerequisites, vector<bool>& visitnum, vector<bool>& visit, int index) {
        visit[index] = true;
        visitnum[prerequisites[index][0]] = true;
        for (int i=0; i<prerequisites.size(); i++){
            if (i == index) {
                continue;
            }
            if (prerequisites[i][0] == prerequisites[index][1]) {
                if (visitnum[prerequisites[i][1]]) {
                    return false;
                }
                if (!visit[i]) {
                    if (!candp(prerequisites, visitnum, visit, i)) {
                        return false;
                    }
                }
            }
        }
        visitnum[prerequisites[index][0]] = false;
        return true;
    }
    
    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
        if (prerequisites.size() == 0) {
            return true;
        }
        vector<bool> visit(prerequisites.size(), false);
        vector<bool> visitnum(numCourses, false);
        for (int i=0; i<prerequisites.size(); i++){
            if (!visit[i]) {
                if (!candp(prerequisites, visitnum, visit, i)) {
                    return false;
                }
            }
        }
        return true;
    }
};

 

资源下载链接为: https://pan.quark.cn/s/67c535f75d4c 在Android开发中,为了提升用户体验和视觉效果,背景模糊化处理是一种常用的设计手段。它可以为应用界面增添层次感,同时突出显示主要内容。本文将详细介绍如何在Android中实现背景模糊化功能。 首先,我们需要获取当前设备的壁纸作为背景。这可以通过WallpaperManager类来完成。调用WallpaperManager.getInstance(this.getContext())可以获取壁纸管理器实例,然后通过getDrawable()方法获取当前壁纸的Drawable对象。接下来,需要将壁纸Drawable转换为Bitmap对象,因为模糊处理通常需要在Bitmap上进行。可以通过((BitmapDrawable) wallpaperDrawable).getBitmap()来完成这一转换。 模糊处理的核心是使用Android的RenderScript API。RenderScript是一种高效的并行计算框架,特别适合处理图像操作。在blur()方法中,我们创建了一个RenderScript实例,并利用ScriptIntrinsicBlur类来实现模糊效果。ScriptIntrinsicBlur提供了设置模糊半径(setRadius(radius))和执行模糊操作(forEach(output))的方法。模糊半径radius可以根据需求调整,以达到期望的模糊程度。 然而,仅依赖ScriptIntrinsicBlur可能无法达到理想的模糊效果,因此我们还需要对原始图片进行缩放处理。为此,我们设计了small()和big()方法。先将图片缩小(small()),然后执行模糊操作,最后再将图片放大(big())。这种方式不仅可以增强模糊效果,还能在一定程度上提高处理速度。在small(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值