目录
前言:
本文中的项目是Taggle的入门比赛项目,旨在让大家对Taggle的比赛有一个大致的了解和一些基本的操作。在参考了一些资料进行整理的情况下,总结出了这篇入门教学案例。
本文就是就一个机器学习的整个过程进行了大致分析,帮助大家对机器学习有一个实践上的认识。最后,因为是入门案例,所有最后的正确率并没有太高—75%左右,在Taggle排在倒数,给我一点时间,后面会更新百分比正确率的方法。
所需数据和代码:提取码:iiyk
项目背景:
泰坦尼克号的沉没是历史上最臭名昭著的沉船之一。
1912年4月15日,人们普遍认为“永不沉没”的皇家邮轮“泰坦尼克”号在处女航中撞上冰山后沉没。不幸的是,船上没有足够的救生艇供所有人使用,导致2224名乘客和船员中有1502人死亡。
虽然生存中有一些运气因素,但似乎有些人比其他人更有可能生存下来。
在这个挑战中,我们要求你建立一个预测模型来回答这个问题:“什么样的人更适合存活下来?
介绍:
机器学习三层架构:
机器学习的本质:机器取代人直接做决策。
云计算:用低成本存储和计算海量数据
机器学习算法:人类思考决策的过程抽象成数学模型,用数学的方法给这个模型找到最优化的解,然后把这个解转换成代码命令,让机器可以去执行,完成机器大脑的构建。模型靠海量数据不断学习来优化自己的决策。
机器学习的步骤:
过程:
提出问题:
什么人在泰坦尼克号上更适合生存?
泰坦尼克号的沉没是历史上最臭名昭著的沉船之一。
1912年4月15日,人们普遍认为“永不沉没”的皇家邮轮“泰坦尼克”号在处女航中撞上冰山后沉没。不幸的是,船上没有足够的救生艇供所有人使用,导致2224名乘客和船员中有1502人死亡。
虽然生存中有一些运气因素,但似乎有些人比其他人更有可能生存下来。
在这个挑战中,我们要求你建立一个预测模型来回答这个问题:“什么样的人更容易存活下来。使用乘客数据(如姓名、年龄、性别、社会经济阶层等)。
理解数据:
1、导入查看数据所需要的包
import numpy as np
import pandas as pd
2、导入数据文件
#训练数据集
train = pd.read_csv('./train.csv')
#测试数据集
test = pd.read_csv('./test.csv')
注:数据文件可以在这个地址下载 百度网盘 提取码:62jt
3、查看数据结构
print('训练数据集:',train.shape,'测试数据集:',test.shape)
训练数据集有891行,12列;测试数据集有418行,11列;
测试数据集比训练数据集少了存活(Survived)这一列一列
4、合并数据
#合并数据集,方便同时对两个数据集进行清洗
full = train.append(test,True)
print('合并后的数据:',full.shape)
5、查看数据
用head()函数,可以返回前5行的数据
#查看数据
full.head()
#Passengerld:顾客编号
#Survived:1:存活,0:死亡
#Plcass:一等舱,二等舱,三等舱
#name:姓名
#Sex: 性别
#Age:年龄
#SibSP:船上同代亲属数
#Parch:船上不同代亲属数
#Ticket:船票编号
#Fare:船票价格
#Cabin:客舱号
#Embarked:登船港口 S:Southampton英国南安普顿 C:Cherbourg法国 瑟堡市 Q:Queenstowm爱尔兰 昆士敦
6、获得数据描述信息
describe()函数只能返回数字数据类型,不能查看字符串数据类型
#获取数据类型列的描述统计信息
full.describe()
#count数据总数
#mean平均值
#std标准值
#min最小值
#25%下四份位数
#50%中位数
#75%上四分位数
#max最大值
其实在这里就可以看出问题,Fare的最小值为0。船票的价钱是不可能为0的,所以我们要注意数据的正确性。
7、查看每一列数据类型
#查看每一列的数据类型和数据总数
full.info()
在这里我们注意到,Survived、Age、Fare、Cabin、Embarked都存在数据缺失现象。
我们发现数据总共有1309行。
其中数据类型列:年龄(Age)、船票价格(Fare)里面有缺失数据:
1)年龄(Age)里面数据总数是1046条,缺失了1309-1046=263,缺失率263/1309=20%
2)船票价格(Fare)里面数据总数是1308条,缺失了1条数据
字符串列:
1)登船港口(Embarked)里面数据总数是1307,只缺失了2条数据,缺失比较少
2)船舱号(Cabin)里面数据总数是295,缺失了1309-295=1014,缺失率=1014/1309=77.5%,缺失比较大
这为我们下一步数据清洗指明了方向,只有知道哪些数据缺失数据,我们才能有针对性的处理。所以接下来我们要进行数据清洗。
数据清洗:
1、数据预处理
在这个案例中,我们只需要进行第三步缺失数据处理和异常值进行处理
缺失值进行处理
机器学习算法为了训练模型,要求所传入的特征中不能有空值。
- 如果是数值类型,用平均值取代
- 如果是分类数据,用最常见的类别取代
- 使用模型预测缺失值,例如:K-NN
#Age,Fare
#对于缺失数字数据类型处理,使用平均值进行填充
print('处理前:')
full.info()
#年龄(Age)
full['Age']=full['Age'].fillna( full['Age'].mean() )
#船票价格(Fare)
full['Fare'] = full['Fare'].fillna( full['Fare'].mean() )
print('处理红后:')
full.info()
'''
Embarked
字符串数据,用最常见的类别取代
Embarked里的字符串类型:缺失较少
出发地点:S=英国南安普顿Southampton
途径地点1:C=法国 瑟堡市Cherbourg
途径地点2:Q=爱尔兰 昆士敦Queenstown
'''
full['Embarked'].value_counts()
S是最多次出现的字符串类型
'''
从结果来看,S类别最常见。我们将缺失值填充为最频繁出现的值:
S=英国南安普顿Southampton
'''
full['Embarked'] = full['Embarked'].fillna( 'S' )
查看Cabin
#船舱号(Cabin):查看数据
full['Cabin'