论文:
Berthelot D, Schumm T, Metz L. BEGAN: Boundary Equilibrium Generative Adversarial Networks[J]. arXiv preprint arXiv:1703.10717, 2017.
1、介绍
GANs是一类方法,这些方法能够学习数据分布并且实现从该分部中采样的模型。GANs的架构基于两个函数:生成器G(z),它可以将取自均匀分布的样本z映射到数据分布;分类器D(x),用来测定样本x是否来自数据分布。通常,基于博弈理论,生成器和分类器可以通过交替训练来实现联合学习。
GANs可以产生较为清晰的图像,但它仍面临许多问题:1、通常非常难以训练;2、难以选择正确的超参数;3、难以控制生成样本的多样性;4、难以平衡分类器和生成器的收敛速度:分类器往往在训练开始就可以取得优势;4、容易遇到模型崩溃问题:模型只学到单一的图像模式。
2、相关工作
介绍了几种GANs的变体,包括DCGANs,EBGANs以及WGANs
3、主要方法
BEGANs将一个自编码器作为分类器,通过基于Wasserstein距离的损失来匹配自编码器的损失分布。采用神经网络结构,训练中添加额外的均衡过程来平衡生成器与分类器。
用下式计算自编码器在样本上的误差:
BEGAN采用Wasserstein距离计算D在真实数据与生成数据损失分布之间的距离。
对于两个正态分布,二者间的Wasserstein 距离计算公式为(文中证明两个损失分布都服从正态分布):