Using Pre-trained Full-Precision Models to Speed UpTraining Binary Networks For Mobile Devices论文阅读笔记

本文探讨了二进制神经网络(BNN)在嵌入式平台的应用挑战,尤其是在算力、内存和能耗方面的限制。通过对比后处理全精度模型与端到端训练的BNN,发现后者在精度保持上有明显优势。文章还介绍了如何利用预训练的全精度模型权重作为BNN全精度代理的初始化值,以此加速BNN的训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.介绍

近年来在将模型应用到嵌入式平台的研究较少,这类平台往往算力,内存和能量消耗的要求都比较严格。

通过后处理全精度模型导出的量化网络在精度上会有明显的损失。但是通过端到端的方法训练的二进制网络表现要好很多。

二进制参通过全精度代理间接学得。二进制参数在前向和反向传播时由代理导出。训练过程中,梯度反向传播并且被应用与全精度代理。

2.BNN预训练

将训练好的模型中的全精度权重作为在等效二进制网络中全精度代理的初始值可以显著地加速训练过程。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值