2024年Arm最新处理器架构分析——X925和A725

关键词:X925、A725、3nm

1、引言

2024年5月,Arm一年一度的新处理器架构更新如期而至。今年是Arm超级大核心X计划的第五代产品,本来按照命名规则应该叫X5,但是这次Arm修改了命名规则,和A系列的命名规则做了一个对齐,新的名称叫做X925,A系列大核心新产品的名称叫做A725,小核心没有更新架构,还是A520。今年Arm新架构的指令集保持和上一年一样,还是Armv9.2架构。因为高通计划在今年采用自研架构处理器,所以预计MTK会先用上搭载X925核心的处理器。命名上,今年的X925,代号叫Blackhawk(黑鹰),A725的代号则叫做Chaberton(夏波顿,法国的一座山名)。

2a0d6a5b04c8614f2d7f700afe1cdee9.png           

6dbd22dbc49c1c7719f4eac1d5f9c648.png         

2、Arm的CSS方案

在2023年的TCS上,Arm就推行了CSS(Compute Subsystem)方案,我理解是一个和芯片厂商深入合作开发解决先进工艺适配的解决方案,可以基于3nm工艺和Armv9的技术,快速适配Android系统并优化AI等方案,具备高效整合CPU和GPU的能力,如将频率推高到3.6GHz以上(参考去年4nm的天玑9200+可以跑到3.35GHz),以及深入开展3nm的PPA优化等等。

71b609e6e29d019fe1fe68b8a54bc5d0.png    

3、3nm工艺制程

今年开始,Android阵营的旗舰处理器工艺逐步向3nm迁移,为半导体工业带来了更多的机遇和挑战。从前期苹果A17系列表现看,3nm依旧是一个成功的工艺制程,并且3nm还会逐步从N3升级N3E、N3P等更优秀的工艺制程。但是,从已经非常成熟的4nm向新的3nm迁移,需要花费更多的时间、金钱,也会遇到更多的问题,这也是Arm推CSS计划联合厂商一起设计的部分原因。况且3nm相比4nm有多少幅度的提升,仍然需要时间和更多产品的实际数据来检验。

8ee3f823d3335f3e1be8bdaf54bb2364.png

357776031d49149473060c91f38cac4c.png 从图中看,为新工艺准备,Arm在3-4年前,就要开启相关产品的ISA和IP设计了。  

a040eb55eb37d6dad24e3dfe95416837.png

4、整体介绍

今年Arm参考设计中一个明显改变是大核心多了,相比传统的1+3+4架构,今年Arm的参考设计是2个X925+4个A725+2个A

### 关于 SCOI2009 WINDY 数的解法 #### 定义与问题描述 WINDY数是指对于任意两个相邻位置上的数字,它们之间的差至少为\(2\)。给定正整数区间\([L, R]\),计算该范围内有多少个WINDY数。 #### 动态规划方法解析 为了高效解决这个问题,可以采用动态规划的方法来处理。定义状态`dp[i][j]`表示长度为`i`且最高位是`j`的WINDY数的数量[^3]。 - **初始化** 对于单个数字的情况(即只有一位),显然每一位都可以单独构成一个合法的WINDY数,因此有: ```cpp dp[1][d] = 1; // d ∈ {0, 1,...,9} ``` - **状态转移方程** 当考虑多位数时,如果当前位选择了某个特定数值,则下一位的选择会受到限制——它必须满足与前一位相差不小于2的要求。具体来说就是当上一高位为`pre`时,当前位置可选范围取决于`pre`的具体取值: - 如果`pre >= 2`, 则可以选择`{0... pre-2}` - 否则只能从剩余的有效集合中选取 这样就可以通过遍历所有可能的状态来进行状态间的转换并累加结果。 - **边界条件处理** 特殊情况下需要注意的是,在实际应用过程中还需要考虑到给出区间的上下限约束。可以通过逐位比较的方式判断是否越界,并据此调整有效状态空间大小。 ```cpp // 计算不超过num的最大windy数数量 int calc(int num){ int f[15], g[15]; memset(f, 0, sizeof(f)); string s = to_string(num); n = s.size(); for (char c : s) { a[++len] = c - '0'; } // 初始化f数组 for (int i=0;i<=9;++i)f[1][i]=1; // DP过程省略... return sum; } long long solve(long long L,long long R){ return calc(R)-calc(L-1); } ``` 此代码片段展示了如何利用预处理好的`dp`表快速查询指定范围内的WINDY数总量。其中`solve()`函数用于返回闭区间\[L,R\]内符合条件的总数;而辅助函数`calc()`负责根据传入参数构建相应的状态序列并最终得出答案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OPPO内核工匠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值