鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
基于 MATLAB 的遗传算法优化自适应模糊神经网络 (GA-ANFIS) 数据回归预测
1. 介绍
自适应模糊神经网络 (ANFIS) 是一种结合了模糊推理和神经网络的机器学习算法,可以用于数据回归预测。然而,ANFIS 的参数众多,且难以人工调优。遗传算法 (GA) 是一种有效的优化算法,可以用于优化 ANFIS 的参数。
GA-ANFIS 算法将 GA 算法与 ANFIS 算法相结合,通过 GA 算法优化 ANFIS 的参数,以提高回归预测的准确性。
2. 原理详解
GA-ANFIS 算法的原理是:
- 编码: 将 ANFIS 的参数编码成染色体。
- 初始化: 初始化种群,包括每个染色体代表一组 ANFIS 参数。
- 评估: 计算每个染色体对应的 ANFIS 模型的回归性能指标,例如均方误差 (MSE) 或平均绝对误差 (MAE)。
- 选择: 根据适应度选择部分染色体进入下一代种群。
- 交叉: 对染色体进行交叉操作,产生新的染色体。
- 变异: