tenworflow中top_k的理解

本文通过示例详细解析了 TensorFlow 中 in_top_k 函数的工作原理,展示了如何使用该函数来判断预测值是否包含在真实标签的前 k 大预测中。并通过改变 k 的值来观察输出的变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


import tensorflow as tf;
 
A = [[0.8,0.6,0.3], [0.1,0.6,0.4]]
B = [1, 1]
out = tf.nn.in_top_k(A, B, 1)
with tf.Session() as sess:
 sess.run(tf.initialize_all_variables())
 print sess.run(out)

输出为[false true]'
理解因为k值为1就是说最大的一个概率索引是多少(分别是0,1)所以为[false true]
如果k=2那么就是(【0,1】,【1,2】)这是就该是[true true],因为两个的索引都包含了1


参考https://blog.csdn.net/uestc_c2_403/article/details/73187915和https://blog.csdn.net/Enchanted_ZhouH/article/details/77200592

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值