大语言模型ChatGLM + P-Tuning微调实践
文章目录
LLM微调基础
LLM微调可以对原有预模型进行专业领域知识的训练,相关领域知识需要进行预处理整理成语料,语料越充分相对来说微调后的模型预测越准,还要结合调参,反复地训练,才有可能达到预期的效果。
微调模型有多种,包括P-Tuning、LoRA等。本次实践采用P-Tuning。
- P-Tuning有两个版本:
1.论文GPT Understands, Too中的Prompt tuning,在本文行文过程中称为P-tuning v1,对应GitHub 代码:https://github.com/THUDM/P-tuningP-Tuning
2.在论文《P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks》中提出,GitHub代码:https://github.com/THUDM/P-tuning-v2
本次实践环境说明
序号 | 资源明细 |
---|