ChatGLM模型与P-Tuning微调实战指南

大语言模型ChatGLM + P-Tuning微调实践

文章目录

LLM微调基础

LLM微调可以对原有预模型进行专业领域知识的训练,相关领域知识需要进行预处理整理成语料,语料越充分相对来说微调后的模型预测越准,还要结合调参,反复地训练,才有可能达到预期的效果。

微调模型有多种,包括P-Tuning、LoRA等。本次实践采用P-Tuning。

  • P-Tuning有两个版本:

1.论文GPT Understands, Too中的Prompt tuning,在本文行文过程中称为P-tuning v1,对应GitHub 代码:https://github.com/THUDM/P-tuningP-Tuning

2.在论文《P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks》中提出,GitHub代码:https://github.com/THUDM/P-tuning-v2

本次实践环境说明

序号 资源明细
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值