文章来源《关于思维科学》,作者洪加威
----计算机能模拟人脑吗?
本文对生命和思维给出一个离散的数学模型,并在这个基础上对难解性问题的意义、计算机能否模拟人脑、思维和存在的同一性以及第五代计算机的研制等问题作一些探讨。
一、难解性问题的提出
计算机能够像人那样思考吗?这是一个引起了广泛兴趣和无穷争论的问题。从来就有两种针锋相对的意见。一种认为,既然人的大脑出是物质的,为什么不可以造出机器来模拟它呢?今天还没有造出来并不等于明天造不出来,更不等于永远造不出来。为了说话方便,不妨把这种观点叫做乐观的论点。另一种则认为,机器总是人造的,怎么有可能达到和超过人的水平呢?计算机的程序也都是人编的,它怎能超过编程序的人呢?机器只能做机械的事情,根本不可能象人那样进行比如说辩证的思维。我们不妨把这种观点叫做悲观的论点。这种思辨式的争论,可以年复一年地进行下去,很难得出多少新的有用的结论。
要使讨论深入下去,只有运用自然科学的和数学的方法,作些具体的研究。计算理论中的成果当然会首先被用来作为探讨这一问题的工具。例如著名的难解性问题,就被用来作为一种新的悲观的论据。什么是难解性问题呢?先考虑下面的例子:假定两个儿子要分遗产。共有五件东西,各值11、32、75、81、113元。要求两人分得的东西的总价值一样,问能办到吗?读者一眼就可以看出来。这是办得到的,因为11+92+113=75+81。一般来说,给了若干个正整数,就可以间能不能把它们分成总和相等的两部分。现在,我们想让计算机来解答上述问题。即希望编出一个程序,使得各个整数输入计算机并经过计算以后、机器就能正确地回答:能或者不能。这件事看来很容易:我们总可以编一个程序,把各种可能的分法都试它一遍,就知道到底能不能分成总和相等的两部分了。但是随着问题规模的不断增大,可能分法的数目就越来越大,以致计算花费的时间与整个输入长度的指数函数成正比,造成了所谓的组合爆炸或指数爆炸。当输入的长度(问题的规模)稍大一点,就变得实际上无法计算,所以称为难解性问题。分遗产的问题只是难解性问题中的一个,还有许多别的难解性问题。
有充分的证据可以认为,只要一个问题是难解的,就不可能找到一个现实可行的程序(即时间耗费是输入长度的一个多项式函数而不是指数函数的程序)来解决它。要解决它,一定会引起时间上、元器件数量上、或者程序长度上的指数爆炸。
人们自然要问,计算机连这种简单的分遗产问题都解决不了,还能模拟人的思维吗?显然,这一结论在争论的天平上为悲观的方面加上了一个新的砝码。然而,这种说法是不是真有道理呢?
二、思维的一个数学模型
之所以能对计算机做出上面这种否定的结论,是因为我们对于什么是计算,什么是计算机有了一个精确的概念和定义。其实,上面分遗产的数学问题,当输入大到一定程度,人脑也无法解决。只不过因为谁也说不清人脑的思维活动到底是什么,所以也就无法给出一个关于人脑的否定性结论。
为了深入地研究思维的活动。我们不妨也把思维加以抽象,给它造一个数学的模型,在严格的模型下作一些严格的推理,看看能得到什么样的结论。这样做有两方面的意义:一方面,如果模型大体正确,我们就可以得到大体上正确的定量结论;另一方面,如果我们由此得出了荒谬的结论,这也可以说明思维的模型不应当是这个样子的,对思维的研究也就深入了一步。本文的主要目的之一就在于从这样的讨论中得出一些启示。
我们不妨先不局限于人的大脑,而把思维看作是生命的一种信息活动。它实际上是生物个体的各细胞之间在环境影响下的一种相互作用。
从生物学知道,生物个体的所有细胞都是由一个单细胞(受精卵)分裂而成的。这些细胞,不管是眼睛上的一个细胞也好,皮肤上的一个细胞也好,染色体DNA上的基因都是完全一样的,只不过是处于不同的状态罢了。生理学中较早的一种学说认为,受精卵会分裂成两个完全一样的细胞,而这两个细胞叉会分裂成四个完全一样的细胞, …… 如此等等。根本没有提到不同的状态。这种学说当然是太简单了一点:如果细胞一直这样分裂下去,最后哪里是孩子的眼睛,哪里是鼻子呢?目前已经证实,人脑是由许多种的细胞构成的,有人估计有五千万种之多,但它们的基因都是相同的。因此我们可以认为是同一的细胞处于许多种不同的状态。当然,这里状态的不同可以表现在形态上,还可以有另外的表现形式。例如,在神经元的模型中,就假定了每个神经元或者处在兴奋状态,或者处在抑制状态。这两种状态还可以经常转换。甚至可以在许多个不同的状态间转换。于是,我们可以一般地假定: Q Q Q是一个有穷的状态的集合,每一时刻每个细胞都处在 Q Q Q中的某个状态 q q q。
从神经生理学知道,每个细胞又伸出许多的支叉,用突触联向别的细胞。如果每个细胞的突触数目不超过 k k k,我们就可以不失一般地假定每个细胞都恰有 k k k个突触。因为,若只有不到 k k k个突触联向别的细胞,就可以认为其余的突触都是联向自己的。我们用集合 K = { 1 , 2 … … , k } K=\{1,2 …… ,k\} K={
1,2……,k}中的数字来标记每个细胞的 k k k个突触,并且把它的第 i i i个突触所联向的细胞称为它的第 i i i个邻居。每一个突触就好像电子计算机中的一个开关。目前,电子计算机的开关都是固定的,而人脑中的突触的联接却是不断变化着的,从而细胞之间的邻居关系也不是一成不变的。只有这样,才能解释人的思想的发展变化过程。
已经强调过,我们只准备给出一个离散的、确定型的模型。所谓离散的,就是把时间看做是一串离散的无穷序列,把被研究的系统看作是由有限个或可数的局部构成的。在任何时刻,对于每个局部,它的状态及其与其他局部的关系,都有一个有穷的描述。所谓确定型的,就是说系统中每一部分在每一时刻的状态都由上一时刻该局部的状态以及与它有关的其他局部的状态唯一地确定。连续的系统,混合的系统,非确定的系统的讨论过于复杂,超出了本文的范围。
根据以上的讨论,在每一时刻,每一个细胞都可以根据自己目前的状态以及它的 k k k个邻居的状态(用数学的语言说,即根据 Q k + 1 Q^{k+1} Qk+1中的一个元素)来做以下几件事情;
- 确定自己在下一时刻应转换到什么状态。这可以用一个映射(函数) φ \varphi φ来表示:
φ : Q k + 1 → Q \varphi:Q^{k+1}\to Q φ:Qk+1→Q - 移动突触。把自己的第 i i i个突触(用 k k k中的一个元素i表示)从自己的第 i i i个邻居B移到第 i i i个邻居的第 j j j个邻居C(用 k k k中的一个元素 j j j表示)。移动之前C是它的第 i i i个邻居的第 j j j个邻居,移动之后C变成了它的第 i i i个邻居,而B则可能不是它的邻居了。这可以用下面的映射的 ψ 1 \psi_1 ψ1表示:
φ 1 : Q k + 1 × K → K \varphi_1:Q^{k+1}\times K\to K φ