DeepSeek 不同版本:特点、关联与对比!

DeepSeek 在人工智能领域热度颇高,其不同版本各具特色。以下对其主要版本进行梳理介绍。

一、产品发布与主流定位

自 2023 年起,DeepSeek 陆续发布了 V1、V2、V3、R1、Janus - Pro 等重点产品。目前主流版本为 V3 和 R1。V3 对标 OpenAI 的 GPT - 4,是 L1 级别的聊天机器人,工程创新多,采用混合专家(MoE)架构,面向自然语言处理任务,在客服、文本摘要、内容生成等领域广泛应用。R1 对标 OpenAI - 1,属于 L2 级别的推理优化模型,专注高级推理任务,利用强化学习提升推理能力,适用于逻辑推理和问题求解场景。在 DeepSeek 官网或 APP 中,默认聊天用 V3 版本,点击 “深度思考(R1)” 则调用 R1 版本。

二、R1 相关模型及关系

R1 - zero 可视为 R1 训练的中间产物,基于 V3 基座模型,完全由强化学习驱动,无需预热阶段,且无初始人工调节。R1 训练流程分两部分:第一部分基于 V3 纯强化训练得 R1 - zero,用于生成冷启动思维链数据,再训练 V3;第二部分先通过少量合成数据微调确保初期稳定,然后以 V3 为基础强化学习,引入语言一致性奖励机制,再引入其他领域监督微调数据增强通用能力,最后通过规则和偏好奖励全面优化得到 R1。

R1 有满血版和蒸馏版。满血版 Deepseek - R1(671B)性能最优,但对服务器要求极高。蒸馏版如 DeepSeek - R1 - Distill - Qwen - 1.5B 等,基于 R1(671B 满血版)通过蒸馏优化技术,在推理速度、计算成本、部署灵活性上优势明显,能在不同计算资源和应用场景下,为各规模企业提供高性价比体验。且蒸馏后的小模型在推理能力上显著超越原始的 Qwen2.5 和 Llama 模型。

三、公开价格对比

DeepSeek 新产品每百万 token 价格显著低于性能相同的 GPT - o1,优惠期最低达 1/100,常规规格的 DS - chat 价格约为 GPT - o3 - mini 的 1/3 - 1/4,体现其 R1 训练成本较低。

四、不同版本 R1 模型的 GPU 参数需求

以 INT8 精度的大模型为例,以精度为INT8的大模型为例,这种精度,一个参数需要占用一个字节

通常使用FP32(4字节)、FP16(2字节)或INT8(1字节)

1B参数模型=10亿参数x每个参数占用的1Byte

1GB显存=1024MB=1024*1024KB=1024*1024*1024Byte

10*108/(1024*1024*1024)=0.93132≈1

结论:1B 的 INT8 参数的大模型部署需要 0.93132G 显存,近似等于 1G

### DeepSeek 模型版本对比分析 #### 初代模型:DeepSeek V1 初代模型标志着DeepSeek系列的起点,在这一阶段,主要目标是建立一个稳定的基础架构并实现基本的功能需求。尽管V1版已经展示了良好的潜力,但在某些复杂应用场景下的表现还有待提高[^1]。 ```python # 基础性能评估函数示例 def evaluate_performance(model_version, task_type): """ 对指定版本的模型执行给定任务类型的性能测试 参数: model_version (str): 被测模型的具体版本号 task_type (str): 测试所针对的任务类别 返回: float: 表现得分(满分10分) """ score = 7.5 if model_version == "v1" else None return score ``` #### 进化中的改进:后续各版本特性增强 随着技术的发展,DeepSeek团队持续优化算法逻辑计算框架,使得新推出的各个迭代版本不仅继承了前序版本的优点,还在多个方面实现了质的飞跃: - **多领域领先能力**:特别是在处理百科知识检索(MMLU)、长文档理解(LongBench)、编程挑战(Codeforces),以及解决高级数理问题(AIME 2024)等方面展现出了卓越的能力,超越了许多其他同类产品[^2]。 - **效率资源利用优化**:通过引入更先进的训练方法和技术手段,提高了运算速度的同时降低了硬件成本开销;这有助于扩大应用范围至更多样化的实际环境中去。 - **功能性扩展**:增加了对多种自然语言的理解和支持程度,能够更好地服务于跨文化交流的需求;同时也加强了对于特定行业术语识别精度方面的研究投入。 综上所述,从最初的探索尝试到如今成为行业内颇具影响力的预训练语言模型之一,每一次更新都凝聚着研发人员的心血结晶,体现了追求极致用户体验的决心。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值