1_2 图像与图像间恢复pose

该程序演示了如何通过OpenCV库利用2D-2D特征匹配来估计相机的旋转R和平移t。首先找到图像间的匹配点,然后利用内参计算本质矩阵,最后通过recoverPose函数恢复旋转和平移信息。代码中包含了从像素坐标到相机归一化坐标的转换,以及对极约束的验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、假设一个点P在图像1和图像2中有对应点为p1和p2,对应的相机归一化坐标系下的坐标为x1和x2,则具有如下公式:

s_{1}p_{1}=KP

s_{2}p_{2}=K(RP+t)

此时p_{1}=Kx_{1},p_{2}=Kx_{2},所以有

s_{1}x_{1}=P

s_{2}x_{2}=RP+t=Rs_{1}x_{1}+t

t^{\wedge }s_{2}x_{2}=t^{\wedge}Rs_{1}x_{1}

x_{2}^{T}t^{\wedge}s_{2}x_{2}=x_{2}^{T}t^{\wedge}Rs_{1}x_{1}

x_{2}^{T}t^{\wedge}Rx_{1}=0

对于slam系统,一般内参已知,则通过p1和p2以及内参矩阵可以计算出x1和x2,进而计算出本质矩阵:

E=t^{\wedge}R

        采用opencv的find

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值