【ML&DL】【skimming】Strip Pooling: Rethinking Spatial Pooling for Scene Parsing

StripPooling:RethinkingSpatialPoolingforSceneParsing提出了一种新型的空间池化方法——条纹卷积,有效捕获远程依赖,增强模型对局部背景的理解,避免不相关区域的干扰,实现了场景解析任务的最新SOTA。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一篇有意思的文章,CVPR 2020的Strip Pooling: Rethinking Spatial Pooling for Scene Parsing[1],文章从空间池化的基础上提出了(分解出了)条纹卷积,并基于此构筑了场景解析(语义分割)的网络,达到了新的SOTA。文章写得挺好的,不过我不是做语义分割的,所以我还是略读了。

痛点

与只在一个小方框中采集信息的传统空间池化结构不同,文章提出的strip pooling条纹卷积,可以更有效地捕获远程依赖,在一些比较分离的区域捕获长程关系,使得模型捕获局部背景与防止不相关区域干扰更加便利。

模型

基于条纹卷积,文章设计了基本块strip pooling module(SPM)以增大backbone感受野,其结构如下图:

更基于此,文章设计了基于SP和SPM的基本残差块Mixed Pooling module(MPM)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oyjQn4FK-1588155947534)(https://user-gold-cdn.xitu.io/2020/4/27/171bac4cc0c47d96?w=621&h=604&f=png&s=94029)]

其中以源码https://github.com/Andrew-Qibin/SPNet
对应的strip pooling如下:

其中以源码https://github.com/Andrew-Qibin/SPNet/blob/master/models/resnet.py
对应的strip pooling module(SPM)如下:

参考文献

[1] Hou Q, Zhang L, Cheng M M, et al. Strip Pooling: Rethinking Spatial Pooling for Scene Parsing[J]. arXiv preprint arXiv:2003.13328, 2020.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

锥栗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值