服务器中 ray 模块的安装配置

本文档介绍了在服务器上安装配置Ray模块的详细步骤,包括使用conda创建虚拟环境,安装Ray及其依赖,启动Ray集群,理解head节点和worker节点的角色与交互,以及在Python中启用和关闭Ray集群的命令。特别强调了服务器环境与Windows环境的不同操作,并提供了相关配置注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ray 官网Welcome to the Ray documentation — Ray 2.3.1

某些 python 模块会调用 ray,如果不好安装配置真的会各种烦人报错,而且服务器使用 ray 与 windows 系统使用方法存在区别

1. conda 创建虚拟环境

创建后虚拟环境中的 pythton 路径如果与系统最先调用的 python 路径不一致(比如多个虚拟环境)在后续调用 pip 或者 ray 一定要用绝对路径

# 创建并激活虚拟环境 ray
conda create -c conda-forge python=3.8 -n ray
conda activate ray

2. 安装 ray

安装 ray 过程中,除了安装 ray 的最基础功能,还需要安装一些依赖库,相当于 ray 的一些扩展功能,具体有哪些可以参考 Ray Default :: Anaconda.org

# 除了这五个还有其他的,但够用了
pip install -U "ray[default]"
pip install -U "ray[air]" 
pip install -U "ray[tune]" 
pip install -U "ray[rllib]"  
pip i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值