NeRF知识点:Mip-NeRF

文章介绍了mip-nerf技术,它通过NeRF的射线表示法进行采样和形成间隔。在每个间隔上计算截锥体的均值和协方差,然后使用集成的位置编码进行特征化。通过MLP处理这些特征来生成体密度和颜色,实现体渲染。采样过程包括粗略和精细两步,其中精细采样从直方图中通过逆变换采样得到。文章还提到了在训练和验证时的采样策略差异,并说明了重建损失的计算方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

简介

NeRF表征射线的方式是: r ( t ) = o + t d r(t) = o + td r(t)=o+td,在这条射线上会进行采样,进而形成一系列intervals,有: T i = [ t i , t i + 1 ] T_i = [t_i, t_{i+1}] Ti=[ti,ti+1]

而在mip-nerf中, 对于每一个interval i i i,都会对其计算对应截锥体(半径由射线的焦距与像素大小共同决定)的均值与协方差:image

最后,再通过integrated positional encoding进行特征化:

image

这些特征将被喂入NeRF网络的MLP中:

image

通过MLP输出的体密度与颜色,就可以照常进行体渲染工作:

image

关于采样,首先在给定near和far平面的情况下,均匀采样为 t c t^c tc,这也称之为 “course”采样,其数学表征为:

image

注意,在训练过程中,采样是随机的,但是在验证的时候,采样是均匀的。

当MLP对应生成一系列“coarse”权重 w c w^c wc后,“fine”采样 t f t^f tf则从由 t c t^c tc w c w^c wc共同定义的直方图中,通过inverse transform sampling采样得到:

image

最终的重建损失也由“coarse”和“fine”共同得到:

image

参考文献

  1. Barron J T, Mildenhall B, Tancik M, et al. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 5855-5864.

  2. Barron J T, Mildenhall B, Verbin D, et al. Mip-nerf 360: Unbounded anti-aliased neural radiance fields[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 5470-5479.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FLOWVERSE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值