NeRF知识点:不同Contraction的数学表达

文章探讨了NeRF技术中针对不同场景的收缩方法,包括正向面对的场景下使用NDC进行线性采样,360°场景的逆球面扭曲,以及MeRF提出的分段投影收缩解决mip-NeRF的计算难题。此外,还介绍了适用于自由轨迹的透视扭曲函数,以适应多样的相机轨迹。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NeRF知识点:不同Contraction的数学表达

目录

Foward-facing 场景:NDC(Normalized Device Coordinate)1

360°,object-centric 场景: inverse-sphere warping1

MeRF: Piecewise-projective Contraction1

自由轨迹: Persepective warping1

Foward-facing 场景:NDC(Normalized Device Coordinate)

image

主要针对forward-facing场景,好处在于:

“Once we convert to the NDC ray, this allows us to simply sample t‘ linearly from 0 to 1 in order to get a linear sampling in disparity from n to ∞ in the original space.”

数学表达形式为:

image

360°,object-centric 场景: inverse-sphere warping

image

mip-NeRF 360 [Barron et al. 2022]

image

image

缺点在于使得ray-AABB intersection难以计算,这意味着难以使得网络跳过那些空的地方。

MeRF: Piecewise-projective Contraction

为了解决mip-nerf中的ray-AABB难以计算的问题,对contraction公式进行了改进:

image

image

自由轨迹: Persepective warping

image

提出一种通用的warping函数,使得能够适应多种相机轨迹形式。

image

image

参考文献链接:2303.15951.pdf (arxiv.org)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FLOWVERSE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值