tensorRT记录

本文详细介绍了如何配置Nvidia-NGC容器,并通过ssh进行连接。同时,针对使用TensorRT部署Pytorch模型时遇到的`explicit_context_dependent failed: invalid device context - no currently active context`错误,提供了解决方案,即在代码中初始化CUDA环境。此外,还提及了镜像的定时备份策略,确保模型部署的安全性和可靠性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

nvidia-docker run --rm -it --name test_tensorRT -e CUDA_VISIBLE_DEVICES=0 -p 8888:8888 -v `pwd`:/workspace -w /workspace/SemanticSegmentation nvcr.io/nvidia/pytorch:20.12-py3 bash

Nvidia-NGC容器配置全过程+ssh配置+镜像定时备份_Farm_Coder的博客-CSDN博客

使用TensorRT部署Pytorch模型_CabbageWust的博客-CSDN博客

 1 tensorrt启动demo报错:

pycuda._driver.LogicError: explicit_context_dependent failed: invalid device context - no currently active context?

解决方法:

import pycuda.autoinit
import pycuda.driver as cuda

# 必须添加这样,才能保证stream调用正常
cuda.init()

stream = cuda.Stream()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值