雾岛心情
微软最有价值专家、微软公共论坛版主、最有价值售前专家、Teched 讲师 先后为华硕、台积电、纬创、冠捷、友达、TPK 等等企业提供顾问咨询服务及培训服务,先后就职于Acer企业服务部、微软中国有限公司。现为企业提供BI+AI数据转型及咨询服务!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【ComfyUI专栏】ComfyUI 常规Lora 模型推荐
本文介绍了多种AI艺术生成模型及应用场景,涵盖平面设计、插画、摄影等多个领域。包括:水彩画、古风汉服、动漫服饰动作、电商展台、线稿绘画、盲盒风格、光影机甲、吉卜力风格、塔罗牌、赛博朋克以及室内设计等11种风格。每种风格都标注了对应的基础模型(如SD1.5)、提示词关键词(如"hanfu,mingstyle")和模型来源链接,为AI艺术创作提供了丰富的技术参考和风格选择。这些模型能实现从传统绘画到现代数字艺术的多样化创作需求。原创 2025-08-05 03:15:00 · 110 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI 实现Lora的串联
本文探讨了在ConfyUI中串联使用多个Lora的实现方法,指出需注意风格相似可能造成效果污染的问题。当使用的Lora风格互补时(如示例中的Morigami和赛博朋克风格),能成功融合不同元素获得理想效果。文章通过对比展示了互补与冲突风格的不同应用结果。(99字)原创 2025-08-03 03:00:00 · 90 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI 基于Pysss Lora加载节点实现生图流程
本文介绍了基于Lora加载器的成图流程,相较于传统方法,Pysss提供的Lora加载器能集成更多信息,包括提示词内容查询等功能。在生成特定风格图片(如猫像人)时,Lora微调后的效果显著优于基础模型。该流程包含模型加载、提示词生成、Ksampler编码等步骤,最终实现图片生成与保存,展示了Lora技术在图像生成中的优势。原创 2025-08-01 01:00:00 · 201 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI 默认Lora节点实现图片生成
本文介绍了使用Lora节点生成图片的方法及注意事项。在模型选择方面,强调必须匹配对应版本(如1.5版本Lora需搭配1.5模型)。实施过程中需充分了解所选Lora的特性,包括是否存在特定触发词等关键信息,这些需要通过实际查询确认,以确保正确加载Lora并生成预期效果的内容。全文着重说明了版本匹配和Lora参数理解的重要性。原创 2025-07-29 02:45:00 · 255 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI 引用Lora
在ComfyUI中使用Lora时需要注意路径配置和触发词要求。Lora文件需放置在默认目录或手动指定路径,部分Lora需要特定触发词才能生效。建议采用推荐权重(如0.7),可使用PysssLora加载器查看详细信息。应用方式分两种:直接接入节点或配合提示词触发。注意权重设置过高会导致图像过度Lora化而丧失模型泛化能力,需找到合适权重平衡效果。原创 2025-07-27 03:00:00 · 50 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI 使用HyperNetworks
HyperNetworks是一种增强神经网络性能的架构。在ComfyUI中,需通过Loader加载HyperNetworks,其默认存储路径为Models/HyperNetworks目录。用户可从civital下载相应文件,并手动调节权重参数以优化生成效果。权重的修改需根据实际应用需求进行自定义设置,从而获得更好的模型表现。原创 2025-07-24 02:45:00 · 87 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI 引用Embedding
Embedding是用于文本提示词的向量数据,可通过ComfyUI界面或Civital等网站获取。使用前需在配置文件中设置目录,国内用户也可从LiblibAI等平台下载。在ComfyUI中可通过调整权重优化图形效果。值得注意的是,Embedding多用于反向提示词,因其对画面效果的直接影响较弱。原创 2025-07-16 11:54:59 · 46 阅读 · 0 评论 -
【ComfyUI专栏】什么是Lora、TextEmbedding和HyperNetworks
本文探讨了大模型成图过程中的微调技术,重点对比了CheckPoint、LoRA和Text-Embedding三种方法。CheckPoint存在计算资源浪费问题;LoRA作为轻量级训练技术,通过低秩适配实现特定风格生成;Text-Embedding则利用文本提示词进行特征映射。文章指出HyperNetwork已逐渐被淘汰,并分析了不同微调方法的作用阶段和适用场景,如LoRA适用于特定姿势生成,Text-Embedding适合人物特征训练,均能以少量素材完成大模型的精准调整。原创 2025-07-22 02:45:00 · 30 阅读 · 0 评论 -
【ComfyUI专栏】利用QRMonsterControlNet生成艺术化二维码
艺术二维码生成新玩法:ControlNet技术可创建独特建筑效果和艺术化二维码。推荐使用QRMonster模型(下载地址:Civitai和Hugging Face平台),配合Brightness ControlNet提升识别率。参数设置建议:强度1.2,启动15%,结束75%。该技术还能将名人照片如周杰伦转化为创意高楼图像,为二维码艺术化提供新思路。原创 2025-07-20 03:30:00 · 29 阅读 · 0 评论 -
【ComfyUI专栏】实现多个ControlNet的连接实现精准图片定义
EfficientNode推出多ControlNet堆叠技术,可一次性串联最多3个ControlNet,简化了原本复杂的多Control操作流程。使用时需注意:输入图像必须经过预处理才能传入ControlNet堆。示例中,图片生成同时受到Canny和depth两个ControlNet的联合控制,最终输出符合预期效果的图像。该技术既保持了操作简便性,又能实现复杂的控制需求。原创 2025-07-18 03:15:00 · 137 阅读 · 1 评论 -
【ComfyUI专栏】ControlNet的IP2P预处理器与模型
ControlNetIP2P是基于InstructPix2Pix数据集的图像转换模型,其创新点在于采用50/50混合的指令与描述提示训练策略,增强了生成效果的多功能性。该模型无需预处理,可直接处理输入图像。例如,在使用"Freezing"提示词时,能有效将建筑转换为冰冻状态。这种平衡提示方法使其比官方版本更具优势。原创 2025-07-15 01:15:00 · 151 阅读 · 0 评论 -
【ComfyUI专栏】ControlNet的SoftEdge预处理器与模型
ControlNetSoftEdge是一种基于神经网络的技术,专注于生成边缘柔和的图像效果。它提供两种预处理器(SoftEdge_PIDI和SoftEdge_HED),相比传统的Canny边缘检测,能产生更粗更自然的边缘效果。该技术赋予创作者更大的细节控制能力,可实现无缝的图像混合效果。文中展示的示例均通过Softedge预处理轻松生成,两种预处理器呈现明显不同的边缘处理特性。原创 2025-07-13 03:00:00 · 97 阅读 · 0 评论 -
【ComfyUI 专栏】ComfyUI中的法线贴图Normals
Normalmaps通过模拟视觉场景中表面的方向,而不是仅依赖颜色数据,来模拟复杂的光照和纹理效果。这对于3D建模和模拟任务至关重要。相比前面提到其他的法相贴图,我们发现Metric 3D的法相贴图效果还是挺不错的。下面是Midas 法线贴图的执行后的效果,执行完成后我们发现效果不是那么好。执行INE后我们可以看到法相贴图效果还是看起来挺不错的,这里我们可以看到基于BAE 的法线贴图的效果。我们可以非常清楚看到四种法相贴图不同。原创 2025-07-08 02:30:00 · 260 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI的MLSD ControlNet
M-LSD是一种专注于直线检测的模型,特别适合处理建筑、室内和几何结构明显的图像。该模型将复杂场景简化为基础结构线条,为人造环境相关的创意项目提供支持。当前1.5版本仅支持单一直线检测功能,模型选择也较为有限。在实际应用中,M-LSD能够简化内容生成流程,尤其适合需要直线构建对象的场景。这种特性使其成为处理几何元素的实用工具,但功能范围目前仍有一定局限性。原创 2025-07-06 02:30:00 · 109 阅读 · 0 评论 -
【ComfyUI专栏】ControlNet的Inpaint预处理器与模型
要使用ControlNet Inpainting,首先通过遮罩隔离要重新生成的区域。这可以通过右键单击所需的图像并选择"Open in MaskEditor"进行修改来实现。下面我们使用了ControlNet的内补的操作之后,大家可以看到我们针对女生脸部的进行的提示词应对。ControlNet内的Inpainting模型允许在图像的特定区域进行细化编辑,在保持整体连贯性的同时引入显著的变化或修正。在使用ControlNet 进行内部的处理过程中,基本上不需要额外的Inpaint的节点来实现预处理。原创 2025-07-03 02:30:00 · 66 阅读 · 0 评论 -
【ComfyUI专栏】ControlNet的Shuffle预处理器与模型
Shuffle模型采用一种新颖的方法,通过随机化输入图像的属性,如配色方案或纹理,而不改变构图。这个模型在创意探索和生成同一图像的变体方面特别有效,保留了结构完整性,但改变了视觉美学。它的随机性意味着每个输出都是独特的,受生成过程中使用的种子值的影响。Shuffle的ControlNet用来进行对象的不同的纹理的设计,最终生成随机的图片。Shuffle的预处理器只有一种,在这里我们可以直接插入相关的节点完成预处理。原创 2025-07-01 03:45:00 · 132 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI的Segmentation预处理器与模型
摘要:图像分割模型通过像素分类识别不同对象,并用颜色标记各类别。该技术可用于分离前景/背景或精细编辑对象。Segmentation预处理器包含多种算法(如Sam、Oneformer、Uniformer等),通过色块标记图像区域。ControlNet的预处理器(如Uniformer和of-coco)能突出主体对象生成,实现基于语义分割的精准图像处理。原创 2025-06-29 02:45:00 · 119 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI使用Scribbles预处理器与模型
摘要:Scribble模型可将图像转换为手绘涂鸦风格,适合艺术重塑和设计流程的初步处理。它帮助绘画基础薄弱者实现绘画梦想。文章介绍了三种预处理器类型:Scribble_HED、Scribble_PIDI和Scribble_XDOG,展示了它们不同的生成效果。通过对比Scribbles默认、PidNet和Xdog预处理器的成图,呈现了多样化的涂鸦风格处理能力。原创 2025-06-25 01:15:00 · 221 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI的LineArt的ControlNet
Lineart anyline:生成更加鲜明的线条绘图,线条更粗重、更大胆,创造出引人注目的效果,特别适合大胆的艺术表达。在这里我们可以非常清楚的看到使用Anime的LineArt最终的效果如图,他生成的动漫的效果相对来说会比较偏动漫效果会比较多。Lineart anime:专注于生成动漫风格的线条绘图,以干净、精确的线条为特征,适合追求动漫美学的项目。这里我们来看下AnyLine的效果,这里体现的最终效果就是非常明晰的看出来线条的效果相比其他的更加清晰和明晰。下面为我们利用不同的线条的效果最终成图结果。原创 2025-06-23 02:45:00 · 512 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI的Depth的深度预处理器
其实在使用WebUI的过程中,我们同样会经历和ComfyUI的过程,只是在ComfyUI将流程可视化了。这里是我们基于depthAnything进行深度内容生成的效果。这里我们可以基于Depth_Leres进行深度内容生成的效果。下面我们将基于MIDas进行深度内容生成。这里我们来看看基于Zoe进行深度内容生成。原创 2025-06-20 02:15:00 · 192 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI的Tile Controlnet
TileResample模型通过与上采样器结合实现图像细节增强,主要用于提高分辨率并优化纹理细节。通常设置3-4次迭代(上限10次)即可有效提升细节。通过ControlNet进行增强处理后,再经放大模型分块处理,最终呈现出色的细节表现效果。该技术特别适用于需要锐化和丰富图像元素的场景。原创 2025-06-18 01:00:00 · 190 阅读 · 0 评论 -
【ComfyUI专栏】ControlNet 预处理器-openPose
OpenPose是一款多功能的姿态估计模型,能够检测人体、面部和手部的关键点。核心功能包括:基础版识别身体主要关节;Openpose_face扩展面部表情分析;Openpose_hand增强手势捕捉能力。通过ControlNet应用,可以精准复制原始图像的姿态特征,生成高度相似的结果。该模型适用于从基础姿势复制到复杂表情手势分析等多种场景。原创 2025-06-16 00:45:00 · 651 阅读 · 0 评论 -
【ComfyUI专栏】ControlNet的Canny预处理
Canny边缘检测算法通过高低阈值组合实现多级边缘检测,其中高阈值确定强边缘,低阈值捕捉潜在边缘。阈值选择需根据图像对比度调整:清晰图像可用较高阈值(如150/80),模糊图像则需较低阈值(如80/30)。与传统层次化方法相比,CannyEdge算法能保留更多细节,生成效果更优。实际应用中需要通过试验逐步调整阈值,平衡边缘完整性和噪声抑制。原创 2025-06-13 01:15:00 · 262 阅读 · 0 评论 -
【ComfyUI专栏】在ControlNet 引用多个预处理器
在很多场景中,我们可能需要多个不同的ControlNet 来进行交叉定义来定制图片的状况。这里我们通过四个不同的预处理器看到的结果。第一个预处理器输出的内容需要和第二个预处理器进行串联,串联后基于第二个预处理器的数据进行输入,最终关联后输出。相比单独的ControlNet,通过两个ControlNet 进行数据处理的结果会更加精细。我们针对第一个ControlNet 预处理器进行数据提取和内容输出。原创 2025-06-11 02:15:00 · 144 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI引用Controlnet节点
本文介绍了ControlNet在图像处理中的应用流程。首先通过加载器节点加载ControlNet,然后选择合适的预处理器(如姿态预处理器)获取图像特征数据。预处理后的结果以图像形式输入ControlNet,并选择与预处理器匹配的处理模型。最后结合ComfyUI节点和标准生成方法,可以输出基于原始图像的相关衍生图像。该流程展示了如何利用ControlNet进行图像特征提取和再生成。原创 2025-06-06 01:15:00 · 52 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI 引用Controlnet实现类图生成
ControlNet 使得用户可以通过输入边缘图、深度图、骨架等来精确控制生成的图像,从而在多种生成任务中取得优异效果。ControlNet 的主要目标是增强生成模型的可控性,使其能够生成与特定输入条件紧密相关的结果。灵活的多模态控制:ControlNet 可以通过不同的控制条件生成图像,这使得它在多模态生成任务中具有优势,比如根据草图生成高质量的图像,或者根据深度图生成三维感知的图像。提高生成质量:ControlNet 通过提供更多的控制信息,可以提高生成模型的输出质量,使生成的图像更加符合预期。原创 2025-06-04 01:00:00 · 132 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI 实现多角度生成
摘要:本文探讨了Lora训练中多角度场景生成的难点及解决方案。由于需要多张照片进行训练,研究者采用互联网模板进行图像生成,并通过姿态调整与空间定位技术实现不同区域的精准定位。该方法能够有效控制生成图像的最终效果,为多角度训练提供了可行的技术路径。(99字)原创 2025-06-02 01:00:00 · 1006 阅读 · 0 评论 -
【ComfyUI专栏】提取ComfyUI中样式定义
我们可以直接下载CheatSheet表格,他的应用方式是下载后直接解压后点击index.html文件获取当前的风格定义。同时也提供了图片的元数据查询,我们的图片如果如果包含了图片生成信息,则会完全显示出来。在多重场景下,如果生成的内容与我们期望的风格类似,则代表模型中有我们当前的特定风格。CheatSheet 是Stable Diffusion 成图风格定义表格。点击Index.html后可以查看到当前的风格的定义效果。在当前的每个风格中,都会有风格对应的提示词定义。原创 2025-05-28 01:00:00 · 137 阅读 · 0 评论 -
【ComfyUI专栏】实现ComfyUI的背景透明化和变换
文章介绍了使用LayDiffusion节点生成带灰度效果的图片的过程。最初生成的图片背景为灰色,且不包含其他对象。通过添加Alpha效果,可以实现透明背景。随后,灰色背景被移除,使得图片能够与任何背景无缝融合。最终,通过将生成的图片与宇宙背景结合,展示了融合后的效果。这一过程展示了图像处理中背景替换和融合的技术应用。原创 2025-05-26 01:00:00 · 594 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI批量去除水印
文章介绍了如何批量去除图片水印的方法。首先,将需要处理的图片文件夹路径和相关参数加载到批次对象中,作为数据输入到局部重绘节点。接着,在工作流中执行去除水印的操作。根据图片数量设置执行批次,例如三张图片则执行三次。这种方法避免了逐个处理的繁琐,提高了效率。原创 2025-05-24 01:00:00 · 249 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI去除角标水印
本文探讨了如何去除图片中的水印,并介绍了基于Segment语义分割技术的方法。通过语义分割,可以有效地将水印与图片内容分离,从而实现水印的去除。这种方法不仅操作简单,而且效果显著,为处理带有水印的图片提供了一种高效的解决方案。原创 2025-05-22 01:00:00 · 252 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI 多图片批量添加水印
在当前的内容中,我们需要加载Load Image Batch 节点来进行批量的方式进行批量执行。节点的Image 作为图像覆盖中输入节点,这里是特别需要注意的地方,我们需要加载批量的图像才能得到文件夹的效果。前面我们提到可以在一个图片中添加水印效果,这些效果已经完美实现。当前目录下有不同的分辨率的图片多张,我们是否可以针对这些对象每个添加不同的水印吗?我们当前一共10张图片,我们这里执行10次用于当前图片全部添加水印。我们当前可以看到每张图片都会有随机出现的水印,不再是固定在一个位置。原创 2025-05-20 02:30:00 · 689 阅读 · 0 评论 -
【ComfyUI专栏】使用ComfyUI中在图片中随机在任何位置添加多个不同水印
本文介绍了如何在图片中添加多个水印,以增强图片的防盗用能力。文章首先回顾了单水印的添加方法,然后详细讲解了如何通过扩展工作流来实现多水印的随机位置添加。重点强调了在操作过程中需要注意的参数输入节点,并建议创建额外的节点以满足需求。文章还提醒读者关注节点中的细节,特别是几个关键节点,以确保水印添加的准确性和效果。通过这种方法,可以有效防止图片被盗用,保护版权。原创 2025-05-18 01:15:00 · 157 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI 添加角标水印
我们在当前可以看到水印生成在右下角中。这时候就需要获取尺寸后进行偏移。这时候我们就需要使用到运算节点来实现这个功能,那么究竟如何来实现这个功能呢?这个时候就需要在节点中的X和Y节点进行计算才能得到需要的结果。那现在我们来玩一点不太一样的,在成图的内容中,我们随机选择出现的位置,这时候就需要调用随机数的节点来生成不一样数据,结合计算节点就可以生成每次都会随机出现在图片的任何位置的结果。我们通过直接添加OverLayer的方法可以为图片添加水印层,但是当前添加的水印效果不是太好。原创 2025-05-15 03:00:00 · 242 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI 去除对象-YoloWorld节点
当前应用节点可以在Manager 节点中进行安装。但是当前这个节点会与其他节点冲突,因此在使用过程中需要注意,最好独立开来。这里的遮罩面积增加是一个非常重要的节点,遮罩增加之后,可以羽化的空间将会增加。和Segment一样,我们可以使用当前节点来进行对象提取,也可以提取成遮罩。在这边选择Inpaint 节点进行对象抹除,这里就是抹除之后的效果。原创 2025-05-13 01:30:00 · 171 阅读 · 0 评论 -
【ComfyUI专栏】在ComfyUI中移除图片中的对象
如果单独将遮罩的东西P不见了,整个画面将会显得非常生硬。这里我们使用扩展遮罩方式将遮罩放大,放大之后能够以相对柔和的方式将图片中不需要的内容提取出来。这里需要同时理解前面两节课程中的内容才能更好的生成相应的内容。其实这个需求简单归纳下就是:把不需要的东西给P 没有了。我们有时候会经常有些这样的需求。原创 2025-05-11 03:30:00 · 281 阅读 · 1 评论 -
【ComfyUI专栏】ComfyUI 为物品更换任意背景
BrushNet 模型是腾讯发布的开源模型。载入文生图节点中的文字控制生成背景效果,例如当前我们使用的是Sea in the background 关键字。在当前生图工作流中,我们结合了BrushNet 节点和Segement节点进行内容组合,生成无限更换背景的图片。在实际应用中,我们很可能需要更换我们的背景,而人物不用进行任何变更的场景。在BrushNet 前面加载BrushNet的加载器,加载当前的模型。在当前的节点中添加BrushNet 节点,节点位于采样器和模型之间。原创 2025-05-07 02:15:00 · 555 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI 提取图片中的对象
很多时候,我们希望将图片中的对象提取出来,在Stable Diffusion WebUI 是一个相对比较简单的事情,但是在ComfyUI 中相比复杂一点点。加载相应的模型获取我们的目标对象,不同的模型获取的准确性略有不同。在当前情况下,我们同样可以实现遮罩的反转来实现需要反转的遮罩功能。载入图片之后,设置提示词并且设置相应的阈值来获取我们需要的对象。在这里我们载入核心的语义分割节点来分割我们需要的内容。当前我们将遮罩转换为图片,最终可以图片方式保存下来。原创 2025-05-05 02:45:00 · 990 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI 实现一张图片的表情迁移
希望针对用户的照片进行微修改,微修改不涉及到非常大的动作,而且希望修改的操作相对比较简单。这个需求可以做到吗?我们必须安装迁移表情节点来实现表情迁移功能,安装节点后重启ComfyUI 实现节点导入。当前内容中可以修改的表情参数非常多,可以按照自己需要来修改相应的参数完成最终表情的修改。相比其他的表情,我们直接使用这样的节点直接针对当前的图片进行修改,方式将会简单很多。原创 2025-05-02 01:30:00 · 310 阅读 · 0 评论 -
【ComfyUI专栏】ComfyUI的脸部修复功能
引导大小是代表我们开始进行介入时候的开始步骤,最大尺寸是结束后的最大尺寸大小。Bbox 阈值也需要特别注意下,如果当前的设置为1,则不会进行任何的修改。在使用ComfyUI中使用FaceDetailed 节点进行修复后的结果,我们会发现人脸已经修复.当前的节点都是Impact-pack自定义节点中的一个节点,通过这个节点我们可以完成脸部的修复。在当前节点中的Sam 模型可以选择当前的Impact-Pack Model中的加载器。在使用ComfyUI的时候,我们在生成多人的情况下出现脸崩的概率非常高。原创 2025-04-30 00:45:00 · 827 阅读 · 0 评论