每天讲解一点PyTorch 【18】多卡训练torch.nn.DataParallel

本文介绍了如何在深度学习中利用多个GPU进行模型训练,通过torch.nn.DataParallel实现模型并行,同时展示了如何配置GPU参数,包括设置CUDA_VISIBLE_DEVICES环境变量,并根据需求调整GPU数量和设备ID。此外,还提到了优化器的并行处理以及在代码中处理CPU和GPU的选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用多GPU训练模型:

net = ......
device_ids = [0, 1]
net = torch.nn.DataParallel(net, device_ids=device_ids)

优化器:

optimizer = torch.optim.SGD(net.parameters(), lr=lr)
optimizer = nn.DataParallel(optimizer, device_ids=device_ids)

GPU setting

parser.add_argument(‘–cpu’, action=‘store_true’, help=‘use cpu only’)
parser.add_argument(‘–n_GPUs’, type=int, default=1, help=‘number of GPUs’)
parser.add_argument(‘–gpu_id’, type=int, default=0, help=‘GPU id’)

os.environ[‘CUDA_VISIBLE_DEVICES’]=str(args.gpu_id)
device = torch.device(‘cpu’ if args.cpu else ‘cuda’)

self.feature_loss_module.to(device)

if not args.cpu and args.n_GPUs > 1:
self.feature_loss_module = nn.DataParallel(
self.feature_loss_module, range(args.n_GPUs)
)

![请添加图片描述](https://img-blog.csdnimg.cn/514c2e7481a34b2ca8834a890de65846.png)





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值