LaTeX中导数、极限、求和、积分

本文介绍如何使用LaTeX来表示数学中的导数、极限、求和及积分等符号和表达式,并提供了多个示例展示正确的书写方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Derivatives, Limits, Sums and Integrals

The expressions

[GIF Image]
are obtained in LaTeX by typing  \frac{du}{dt}  and  \frac{d^2 u}{dx^2}  respectively. The mathematical symbol  [GIF Image]  is produced using  \partial . Thus the Heat Equation
[GIF Image]
is obtained in LaTeX by typing
\[ \frac{\partial u}{\partial t}
   = h^2 \left( \frac{\partial^2 u}{\partial x^2}
      + \frac{\partial^2 u}{\partial y^2}
      + \frac{\partial^2 u}{\partial z^2} \right) \]

To obtain mathematical expressions such as

[GIF Image]
in displayed equations we type  \lim_{x \to +\infty} \inf_{x > s}  and  \sup_K  respectively. Thus to obtain
[GIF Image]
(in LaTeX) we type
\[ \lim_{x \to 0} \frac{3x^2 +7x^3}{x^2 +5x^4} = 3.\] 

To obtain a summation sign such as

[GIF Image]
we type  \sum_{i=1}^{2n} . Thus
[GIF Image]
is obtained by typing
\[ \sum_{k=1}^n k^2 = \frac{1}{2} n (n+1).\] 

We now discuss how to obtain integrals in mathematical documents. A typical integral is the following:

[GIF Image]
This is typeset using
\[ \int_a^b f(x)\,dx.\] 
The integral sign  [GIF Image]  is typeset using the control sequence  \int , and the  limits of integration  (in this case  a  and  b  are treated as a subscript and a superscript on the integral sign.

Most integrals occurring in mathematical documents begin with an integral sign and contain one or more instances of d followed by another (Latin or Greek) letter, as in dxdyand dt. To obtain the correct appearance one should put extra space before the d, using \,. Thus

[GIF Image]
[GIF Image]
[GIF Image]
and
[GIF Image]
are obtained by typing
\[ \int_0^{+\infty} x^n e^{-x} \,dx = n!.\] 
\[ \int \cos \theta \,d\theta = \sin \theta.\] 
\[ \int_{x^2 + y^2 \leq R^2} f(x,y)\,dx\,dy
   = \int_{\theta=0}^{2\pi} \int_{r=0}^R
      f(r\cos\theta,r\sin\theta) r\,dr\,d\theta.\] 
and
\[ \int_0^R \frac{2x\,dx}{1+x^2} = \log(1+R^2).\] 
respectively.

In some multiple integrals (i.e., integrals containing more than one integral sign) one finds that LaTeX puts too much space between the integral signs. The way to improve the appearance of of the integral is to use the control sequence \! to remove a thin strip of unwanted space. Thus, for example, the multiple integral

[GIF Image]
is obtained by typing
\[ \int_0^1 \! \int_0^1 x^2 y^2\,dx\,dy.\] 
Had we typed
\[ \int_0^1 \int_0^1 x^2 y^2\,dx\,dy.\] 
we would have obtained
[GIF Image]

A particularly noteworthy example comes when we are typesetting a multiple integral such as

[GIF Image]
Here we use  \!  three times to obtain suitable spacing between the integral signs. We typeset this integral using
\[ \int \!\!\! \int_D f(x,y)\,dx\,dy.\] 
Had we typed
\[ \int \int_D f(x,y)\,dx\,dy.\] 
we would have obtained
[GIF Image]

The following (reasonably complicated) passage exhibits a number of the features which we have been discussing:

[GIF Image]
One would typeset this in LaTeX by typing
In non-relativistic wave mechanics, the wave function
$\psi(\mathbf{r},t)$ of a particle satisfies the
\emph{Schr\"{o}dinger Wave Equation}
\[ i\hbar\frac{\partial \psi}{\partial t}
  = \frac{-\hbar^2}{2m} \left(
    \frac{\partial^2}{\partial x^2}
    + \frac{\partial^2}{\partial y^2}
    + \frac{\partial^2}{\partial z^2}
  \right) \psi + V \psi.\] 
It is customary to normalize the wave equation by
demanding that
\[ \int \!\!\! \int \!\!\! \int_{\textbf{R}^3}
      \left| \psi(\mathbf{r},0) \right|^2\,dx\,dy\,dz = 1.\] 
A simple calculation using the Schr\"{o}dinger wave
equation shows that
\[ \frac{d}{dt} \int \!\!\! \int \!\!\! \int_{\textbf{R}^3}
      \left| \psi(\mathbf{r},t) \right|^2\,dx\,dy\,dz = 0,\] 
and hence
\[ \int \!\!\! \int \!\!\! \int_{\textbf{R}^3}
      \left| \psi(\mathbf{r},t) \right|^2\,dx\,dy\,dz = 1\] 
for all times~$t$. If we normalize the wave function in this
way then, for any (measurable) subset~$V$ of $\textbf{R}^3$
and time~$t$,
\[ \int \!\!\! \int \!\!\! \int_V
      \left| \psi(\mathbf{r},t) \right|^2\,dx\,dy\,dz\] 
represents the probability that the particle is to be found
within the region~$V$ at time~$t$.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值