softmax的cuda编程详细解读——算子融合

本文详细探讨了在CUDA编程中优化softmax计算的方法,通过算子融合将全局最大值规约和全局求和计算合并,以提高性能。文章介绍了如何在GPU上进行规约操作,包括全局max规约和max与sum的同步计算,并提供了相应的CUDA代码示例,展示了如何处理高维数组的softmax问题,特别是一维线程块在处理高维数组softmax时的优化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

softmax介绍

在上一篇博客我们介绍了softmax的内容以及相关的编程实现,总结一下softmax的特点如下:(没有特殊说明的情况下,考虑的仍然只是1D向量 x x x
1:获得向量的全局最大值M
2:针对向量 x ^ = { exp ⁡ ( x i − M ) } i \hat{x} = \{\exp(x_i -M)\}_i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谨慎付费(看不懂试读博客不要订阅)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值