Python语言

Python是解释型语言,在阅读时容易从代码层面理解。

配置了Python3.5环境。在SublimeText中学习python。Python中的数据类型和字符串与C语言类似,在定义一个变量时,python可以不用先定义出变量的类型。Python内置了四种表示数据集合的数据类型,分别是:list,tuple,dict和set。List中的元素是可变的,tuple中是不可变的,所以用起来更为安全。dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度,dict的key必须是不可变对象。set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。Python的循环有两种,一种是for...in循环,依次把list或tuple中的每个元素迭代出来;第二种循环是while循环,只要条件满足,就不断循环,条件不满足时退出循环。其条件判断和C语言类似,elif代表elseif。

学习了python的函数的用法,如何调用函数和定义函数:定义一个函数要使用def语句,依次写出函数名、括号、括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用return语句返回。函数的参数和递归函数都和C类似。

此外,python语言还有许多高级特性,如切片,迭代,列表生成式,生成器和迭代器。利用切片可以获取一个list或tuple的部分元素。用C或者Java,迭代是通过下标完成的,而在python中,迭代是用过for…in来完成的。列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

Python中的高阶函数:map/reduce,filter和sorted.返回函数:将函数作为返回值。匿名函数:使用lamda。以及装饰器和偏函数:functools.partial的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。

Python本身就内置了很多非常有用的模块,只要安装完毕,这些模块就可以立刻使用。在一个模块中,我们可能会定义很多函数和变量,但有的函数和变量我们希望给别人使用,有的函数和变量我们希望仅仅在模块内部使用。在Python中,是通过_前缀来实现的。


本书围绕数据的表示、存取、计算、分析和可视化等内容分两部分详细介绍Python语言程序设计:Python程序设计基础部分(第1章至第6章、第10章)主要介绍Python作为一门高级编程语言所涉及的语法知识、控制结构、函数与模块、类和对象、图形界面设计,并穿插了计数、累加、连乘等数值计算常用算法内容;Python数据管理与分析部分(第7章至第9章、第11章)主要介绍数据文件操作、数据库操作、数据分析和数据可视化等知识。 本书按照首先论道、继而论理、然后操作的顺序,从哲学视角看程序设计,使读者在认识物质世界规律的过程中了解计算机的特点、程序设计的特点和人机交互的规律,在认识世界、解释世界和改造世界的实践中掌握Python编程特点、技术和技巧,学会结构化程序设计、面向对象程序设计、人机交互界面设计和数据分析等方面的编程技术。 本书可供大数据专业学生学习程序设计使用,也可作为高等院校“Python程序设计”课程教材,还可供数据分析人员参考。 内容实用——理论与实践结合,重点突出应用 体系完善——构建完整的大数据专业解决方案 产教融合——高校企业共参与,对标行业标准 资源丰富——微课、课件、教案、源码、答案 随着国家大数据战略的深入实施,各行业智慧化建设急需数据分析人才和智能应用人才。智慧化简单来说是一个以机器替换人力的过程,而机器的“灵魂”是程序。Python已经成为公认的驱动大数据智能应用的主流编程语言Python程序设计的书籍已经琳琅满目,每一本书都凝聚了作者对Python的理解和对程序设计的认识,都是作者编程开发和教学经验的总结,都折射出作者的专业背景。由于大数据专业学生对程序设计的要求不是很高,但又需要具备一定的计算思维能力,熟悉用程序进行数据分析的一般流程,因此程序设计教材要言不甚深、文不甚俗,既要覆盖相关技术,又不能面面俱到,注重对问题的分析和解释,用程序表达算法。鉴于此,我们编写了本书。 本书每一章的标题都以Python开头,凸显Python在各个部分都有其独特的编程理念和方法。与其他高级编程语言如C、C++和Java等相比,Python在数据的表示、处理和可视化方面都有绝对的优势。有编程基础的学习者在学习Python时最好能忘掉以往程序设计语言的语法,彻底转变观念,以全新的姿态融入到Python编程特点和规律之中。如变量定义、数据类型、数据结构、控制结构、类和对象、文件访问、数据分析和可视化,每一部分都有其特别之处,都值得我们重新认识,重新使用,重新熟悉。每一章开始的思维导图都是对本章技术脉络的梳理,开门见山地给学习者展示本章的知识和技术体系,以便学习者在学习过程中始终能保持思路清晰和整体把握。每一章开头的本章导读都是编者多年来程序开发与设计教学经验的提炼与升华,都是对程序设计的理解和感悟,值得学习者深入领会。每一章开头的本章要点都是要求学习者深入理解的重要知识和熟练掌握的关键技术。每一章的小结都是对本章要点的具体解释,供学习者复习查询。 本书为河北省高等教育教学改革研究与实践项目“新工科背景下警务大数据应用专业人才培养模式与教学实践研究”(编号:2018GJJG450)的阶段性成果。 下面是本书的体系结构图。 第1章Python编程初步。学习本章,要了解Python作为一种计算机程序设计脚本语言,结合了解释性、编译性和互动性的特点;了解在Linux和Windows中安装Python的方法;了解IDLE、PyCharm和Jupyter三种常用Python程序编辑环境。工欲善其事,必先利其器,通过对本章的学习,学习者可拥有一个强大的编程工具,从此开启数据分析编程之旅。 第2章Python语言基础。Python作为一门与计算机交流的编程语言,有着跟自然语言相似的特点:字、词、句、段落、篇章,以及相应的行文语法规则。学习本章,要理解程序行文的字词句,主要包括基本数据类型、常量和变量、运算符和表达式;理解程序的段落和篇章,主要包括常用内置函数、库函数和系统函数的使用;掌握程序的语法规则,主要包括常用的变量定义和标识符命名规则、语句组织成文编码规则等。这些都是程序设计的基础,学习者只有对此熟练掌握后,才能在后续的学习中得心应手。 第3章Python组合数据类型。组合数据类型是Python语言区别于其他高级编程语言的一大特色,通过组合数据类型,省去了其他语言各种复杂数据结构的设计,给编程人员带来了极大的方便,这也是Python流行于数据分析领域的原因之一。学习本章,要熟练掌握Python组合数据类型(列表、元组、字符串、字典、集合)的创建、访问和常见基本操作,以及序列解包功能。 第4章 Python控制结构。针对物质随时间由简单向复杂、由低级向高级发展的顺序,Python语言有相应的顺序结构语句;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值