
Pytorch深度学习实战
文章平均质量分 94
🔥附全套代码🔥涵盖:Pytorch基础、深度学习的数学原理、卷积神经网络、循环神经网络、现代注意力机制、深度强化学习等核心内容🔥订阅后私信博主或在文章底部/博客主页添加博主微信进入技术交流群
Mr.Winter`
同济大学控制科学与工程硕士,机器人算法工程师,主攻机器人运动规划方向,业余丰富各种技术栈。CSDN原力计划作者、官方内容合伙人;2023新星计划Pytorch赛道导师
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
什么是深度学习?从图灵测试谈到ChatGPT
你了解深度学习发展的脉络吗?细数人工智能的里程碑事件,从图灵测试、深蓝大战国际象棋高手、阿尔法狗连续击败李世石,谈到ChatGPT的出现。人工智能还在发展,未来还将继续...原创 2023-03-13 08:00:00 · 15072 阅读 · 50 评论 -
一文彻底理解时间复杂度和空间复杂度(附实例)
什么是NP难问题?什么是时间复杂度?什么是空间复杂度?本文串讲这些概念,并给出代码实例加深理解原创 2023-08-21 09:10:45 · 3576 阅读 · 29 评论 -
Pytorch深度学习实战0-6:图解神秘的梯度下降算法原理(附代码)
图文详解梯度下降算法原理+手推公式,附Python代码实战加深理解原创 2022-02-03 16:03:41 · 11978 阅读 · 50 评论 -
Pytorch深度学习实战1-5:解析函数对向量、矩阵的梯度(向量、矩阵求导)
总结十大常用矩阵求导公式并推导原创 2021-03-12 08:50:26 · 8337 阅读 · 2 评论 -
Pytorch深度学习实战1-6:图解牛顿迭代法,牛顿不止力学三定律
图文详解牛顿迭代算法原理+手推公式,附Python实战代码加深理解原创 2022-02-09 18:09:59 · 3146 阅读 · 42 评论 -
Pytorch深度学习实战2-1:详细推导Xavier参数初始化(附Python实现)
参数初始化在深度学习中起着重要的作用,其目标是使模型具有良好的初始状态,以便在训练过程中快速且稳定地收敛。本文详细推导Xavier初始化理论,并给出了代码实现和可视化思考加深理解原创 2023-11-27 10:15:04 · 2105 阅读 · 19 评论 -
Pytorch深度学习实战3-1:最新Windows/Ubuntu双系统Pytorch图文安装教程
最新CUDA/cuDNN与Pytorch保姆级图文安装教程:CUDA下载、安装、多版本切换、卸载;解析CUDA、cuDNN、NVIDIA驱动、Pytorch间的版本对应关系原创 2022-10-23 14:08:19 · 6758 阅读 · 5 评论 -
Pytorch深度学习实战3-2:什么是张量?Tensor的创建与索引
张量是多维数组结构,在人工智能领域应用广泛。本文介绍Pytorch中的张量格式,以及七种张量创建方法和三种张量索引方法原创 2023-02-06 08:00:00 · 2575 阅读 · 47 评论 -
Pytorch深度学习实战3-3:张量Tensor的分块、变形、排序、极值与in-place操作
总结Pytorch中的张量Tensor分块、组合、变形(维度变换、维度交换、序列化与反序列化、扩展)、排序、极值、in-place操作的基本API方法原创 2023-02-17 09:18:55 · 4147 阅读 · 18 评论 -
Pytorch深度学习实战3-4:通俗理解张量Tensor的爱因斯坦求和(附实例)
在深度学习中经常涉及高阶张量运算,普通代数方法(如矩阵乘法)相对冗杂,因此引入爱因斯坦求和约定,使深度学习算法简洁优雅。本文通过实例详细介绍爱因斯坦求和原理原创 2023-02-22 08:30:00 · 3234 阅读 · 25 评论 -
Pytorch深度学习实战3-5:详解计算图与自动微分机(附实例)
本文详细介绍Pytorch中计算图的底层原理,讲解基于计算图的前向传播和反向传播,Pytorch自动微分原理以及梯度缓存、参数冻结等技巧原创 2023-03-02 09:00:00 · 2899 阅读 · 30 评论 -
Pytorch深度学习实战3-6:详解网络骨架模块nn.Module(附实例)
在实际应用过程中,经典网络结构往往不能满足我们的需求,因而大多数时候都需要自定义模型,本文介绍Pytorch中用于自定义模型的nn.Module方法原创 2023-03-23 09:32:04 · 3863 阅读 · 9 评论 -
Pytorch深度学习实战3-7:详解数据加载DataLoader与模型处理
本文以MNIST手写数据集为例,图文讲解Pytorch中操作数据的核心类Dataset和DataLoader,介绍其基本原理和主要的数据预处理方法原创 2023-03-22 09:11:41 · 3039 阅读 · 15 评论 -
Pytorch深度学习实战3-8:详解数据可视化组件TensorBoard安装与使用
在深度学习领域,人工调试极其困难。Tensorboard则是神经网络的可视化工具,可以记录训练过程的数字、图像、运行图等,观察神经网络训练过程并指导参数优化。原创 2023-03-09 10:10:09 · 4058 阅读 · 21 评论 -
神经网络听上去高大上?带你从零开始训练一个网络(基于MNIST)
神经网络很高大上?本文带你从零开始学习数据集的加载、网络结构的搭建、模型训练的实现,从宏观上了解神经网络的训练过程。原创 2022-07-11 07:43:58 · 6698 阅读 · 104 评论 -
通用人工智能之路:什么是强化学习?如何结合深度学习?
【专栏订阅必读】ChatGPT强大魔力的关键因素之一是应用了强化学习模型,本文系统梳理强化学习中环境、智能体、奖赏、动作、状态等关键概念,并给出深度强化学习框架。原创 2023-07-03 08:46:57 · 8082 阅读 · 29 评论 -
环境搭建 | Gym安装与环境搭建教程(附基本指令表)
强化学习是在潜在的不确定复杂环境中,训练一个最优决策指导一系列行动实现目标最优化的机器学习方法。自从AlphaGo的横空出世之后,确定了强化学习在人工智能领域的重要地位,越来越多的人加入到强化学习的研究和学习中。OpenAI Gym是一个研究和比较强化学习相关算法的开源工具包,包含了许多经典的仿真环境(各种游戏),兼容常见的数值运算库,使用户无需过多了解游戏的内部实现,通过简单地调用就可以用来测试和仿真。OpenAI GymGym开源库:测试仿真环境,这些环境有一个公共的接口且允许用户设计通用的算法。原创 2023-04-20 09:33:37 · 29142 阅读 · 41 评论 -
经典强化学习 | 详解K摇臂赌博机模型和ϵ-贪心算法
本文详解单步强化学习的理论模型K摇臂赌博机,引出强化学习中仅利用和仅探索的思想。最后介绍ϵ-贪心算法和softmax算法并给出Python实现,以及各个算法间的对比原创 2023-06-29 09:54:19 · 3758 阅读 · 0 评论 -
经典强化学习 | 策略评估与贝尔曼期望方程详细推导
策略评估是给定一个策略计算策略评估函数的过程,用于衡量策略的好坏。本文从一个例子引出回报与奖赏的概念,并由浅入深推导贝尔曼期望方程,最后给出了收敛性证明,为强化学习的策略评估提供理论保证原创 2023-07-06 08:16:15 · 3591 阅读 · 0 评论 -
经典强化学习 | 策略改进定理与贝尔曼最优方程详细推导
贝尔曼期望方程用于策略评估,那么我们如何借助贝尔曼方程改进策略呢?本节从理论层面推导贝尔曼最优方程和策略改进定理,介绍策略迭代和价值迭代两种算法流程原创 2023-08-03 19:11:01 · 1500 阅读 · 0 评论 -
经典强化学习 | 详细推导蒙特卡洛强化学习原理
在现实的强化学习任务中,转移概率、奖赏函数甚至环境中存在哪些状态往往很难得知,因此引入免模型学习。蒙特卡洛强化学习是免模型学习中的一种,本文介绍蒙特卡洛强化学习中的策略评估原理,以及同轨和离轨策略改进原理,给出详细的公式推导原创 2023-12-04 10:17:43 · 4013 阅读 · 0 评论 -
经典强化学习 | 详解时序差分强化学习(SARSA、Q-Learning算法)
本文介绍另一种免模型学习技术——时序差分强化学习,结合策略评估原理以及常见的SARSA和Q-Learning算法,给出详细的公式推导加深理解原创 2023-12-11 12:21:34 · 3485 阅读 · 0 评论 -
深度强化学习 | 详解基于价值的强化学习DQN算法(附Pytorch实现)
深度Q网络DQN的核心原理是通过经验回放池和目标网络技术拟合高维状态空间,是Q-Learning算法的深度学习版本,本文分析DQN的基本算法,并给出训练实例和实际案例原创 2023-12-26 10:13:22 · 4000 阅读 · 0 评论 -
经典强化学习 | 基于Q-Learning的机器人走迷宫
在机器人走迷宫中,机器人需要避开所有障碍从起点到达终点。本文基于Q-Learning来实现机器人走迷宫游戏的自主探索与学习原创 2023-12-19 09:46:34 · 6342 阅读 · 0 评论 -
深度强化学习 | 基于DQN实现Flappy Bird游戏与分析
在Flappy Bird中,玩家需要通过控制小鸟安全穿过随机长度的水管来得分。本文基于深度Q网络DQN来实现Flappy Bird游戏的自主探索与学习原创 2023-01-28 08:00:00 · 5283 阅读 · 0 评论