python:IndexError: too many indices for array

本文探讨了在使用numpy处理矩阵数据时遇到的维度冗余问题,解释了如何通过np.shape函数检查矩阵维度,并提供了使用np.reshape和np.squeeze方法来重构矩阵或去除冗余自由度的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

出现这样的情况你因为你矩阵的维度出现了冗余情况,比如你把一组数放入矩阵,矩阵默认的维度是2,但是你其实只有一列数,

或者你实际是2维的数据,你将其转为3维数据形式,也会报错。

因此可以先用np.shape函数查看你的矩阵维度,是否出现了(n,)这样的情况。

       然后对矩阵进行reshape重构,或者np.squeeze去除冗余自由度就可以避免这样的问题。

data = np.reshape(data,[-1,20,28,28])

or
Y_prediction_test = np.squeeze(d['Y_prediction_test'])

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值