YOLO(3) —— 门外汉依葫芦画瓢来搬砖

本文介绍了如何在RKNN环境下部署YOLOv4-tiny进行目标检测。首先,通过virtualenv搭建环境并安装所需库,接着下载模型配置文件和权重,然后修改darknet_test.py和yolov4_utils.py以适应YOLOv4-tiny。在运行脚本生成.rknn模型后,进行了模型测试。最后,讨论了在rk3568上部署时模型输出数据处理的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        yolov4-tiny在rknn下测试

        使用virtualenv,安装python3.6、rknn及其依赖

        source py3.6venv/bin/activate 进入虚拟环境

        yolov4-tiny$ ls
                darknet_test.py  yolov4-tiny.cfg  yolov4-tiny.weights  yolov4_utils.py

        下载yolov4-tiny.cfg 、yolov4-tiny.weights

        拷贝原本rknn example darknet yolov3的 darknet_test.py,拷贝yolov3_utils.py为yolov4_utils.py

        准备数据,拷贝原本的dog_bike_car_416x416.jpg,dataset.txt

dataset.txt:

        dog_bike_car_416x416.jpg

        参考网络文章,修改darknet_test.py yolov4_utils.py

        执行python3 darknet_test.py,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值