python(四)-线程间同步-Lock、Rlock

本文探讨了线程间数据不一致的原因,通过Python示例解释了GIL如何影响并发操作,并介绍了Lock和RLock两种线程同步机制,包括它们的使用场景和潜在问题,如死锁。最后展示了如何在实际代码中应用这些概念来确保数据一致性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为什么线程间数据不一致?import disdef add1(a):    a +=1print(dis.dis(add1)) #查看函数字节码运行方式==============结果============651           0 LOAD_FAST                0 (a)              3 LOAD_CONST               1 (1)              6 INPLACE_ADD              7 STORE_FAST               0 (a)             10 LOAD_CONST               0 (None)             13 RETURN_VALUE说明:当a是全局变量被多个线程使用,可能因为GIL的原因,当运行到RETURN_VALUE的时候,线程刚好被切换到了其他函数进行赋值操作,所以导致返回的数据不是期望结果,解决方法-加锁线程锁'''线程同步:LockRLock缺陷:锁会影响性能,锁会产生死锁lock.acquire 要和lock.release同时用,否则锁无法释放,其他线程一直等待释放RLock:在同一线程里,可以连续调用多次RLock,要求acquire、release数量一致'''from threading import Lock,RLocktotal = 0rlock = RLock()lock = Lock()def add(lock):    global total    for i in range(1000000):        lock.acquire() #Lock连续调多次acquire会产生死锁        total += 1        lock.release() #释放锁def desc(rlock):    global total    for i in range(1000000):        rlock.acquire() #增加锁        rlock.acquire()  #可以连续调用多次RLock        total -= 1        rlock.release() #释放锁        rlock.release() #释放锁import threadinga = threading.Thread(target=add,args=(lock,))b = threading.Thread(target=desc,args=(rlock,))a.start()b.start()a.join()b.join()print(total)

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值