摘要
AI智能体正从实验室概念演进为企业级解决方案的核心引擎。本文深入剖析智能体架构的七大核心技术模块,包括决策引擎、工具调用、状态管理、多智能体协作等关键组件,结合Google、Meta等头部企业的实战经验,通过10张架构图和5个代码案例,系统解读从理论到生产环境的完整技术栈。内容涵盖ReAct/ToT决策框架、函数调用优化、向量化记忆、分布式编排等前沿技术,揭示智能体在金融、医疗、制造等领域的落地路径。全文超过6000字,提供可复用的架构范式。
1 智能体架构分层模型
1.1 四层参考架构
1.2 核心模块功能映射
模块 | 技术实现 | 关键挑战 |
---|---|---|
感知输入 | Whisper语音识别 CLIP图像理解 |
多模态对齐 |
决策引擎 | ReAct/ToT框架 LLM推理优化 |
推理可靠性 |
工具调用 | OpenAI函数调用 Toolformer微调 |
参数验证 |
状态管理 | Vector Memory 增量摘要 |
长期依赖 |
协作网络 | A2A协议 智能体路由 |
通信开销 |