向量数据库为何抛弃SQL?高维数据查询的范式革命

摘要

在AI时代处理海量非结构化数据的背景下,向量数据库已成为现代技术栈的核心组件。本文深入解析向量数据库为何放弃传统SQL查询范式,通过维度诅咒相似度计算瓶颈索引结构革命三大维度,结合10张架构图与性能对比数据,揭示专用查询语言如何实现千倍性能提升。全文超5000字,涵盖Faiss、Milvus、Pinecone等主流技术实现,为开发者提供架构选型指南。


1 SQL的黄昏:高维数据的“维度诅咒”

1.1 向量数据的本质特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一休哥助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值