IIT Delhi Near IR Face Database 黑暗场景下近红外人脸数据集

IIT Delhi发布的Near IR Face Database 2.0包含115位17至50岁个体的574张黑暗场景下近红外图像,主要用于红外人脸识别和检测研究。该数据集由印度IIT Delhi的学生和工作人员组成,图片分辨率768 x 576,每位个体2至6张图片。相关研究论文提及在线夜间个人识别技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### IR100 数据集简介 IR100 数据集通常指的是一种与信息检索(Information Retrieval, IR)相关的数据集,但其具体定义和用途可能因领域或研究方向而异。根据现有资料,并没有明确标注为“IR100”的公开数据集。然而,可以从类似的数据集中推测其可能的用途和结构。以下是对相关信息的整理: #### 1. 数据集类型推测 IR100 数据集可能属于信息检索领域的基准测试数据集之一,类似于 MS MARCO[^2] 或其他类似的 IR 测试集。这类数据集通常包含以下内容: - 查询(Queries):用户输入的搜索请求。 - 文档集合(Documents):用于检索的相关文档集合。 - 标注(Annotations):查询与文档的相关性评分。 #### 2. 下载资源 由于没有明确的 IR100 数据集官方链接,可以参考以下类似的数据集资源进行下载和研究: - **MS MARCO**:微软提供的大规模机器阅读理解数据集,适用于信息检索和问答系统的研究。访问地址为 [MS MARCO 官方网站](https://microsoft.github.io/msmarco/)。 - **IIT Delhi Near IR Face Database**:如果 IR100 数据集涉及近红外图像处理,可参考此数据集[^1]。访问地址为 [IIT Delhi Near IR Face Database](http://www4.comp.polyu.edu.hk/~csajaykr/IITD/FaceIR.htm)。 #### 3. 数据集使用场景 假设 IR100 数据集存在,其可能的应用场景包括但不限于以下几种: - **信息检索模型训练**:利用训练集调整模型参数以提高检索精度[^3]。 - **性能评估**:通过测试集评估模型在真实世界任务中的表现。 - **学术研究**:为研究人员提供标准化的实验环境。 #### 4. 示例代码 以下是一个简单的 Python 脚本,展示如何加载和处理常见的文本数据集(如 MS MARCO)。若 IR100 数据集可用,可参考此方法进行处理。 ```python import json # 假设 IR100 数据集为 JSON 格式 def load_ir100_data(file_path): with open(file_path, 'r', encoding='utf-8') as f: data = json.load(f) return data # 示例:加载数据并提取查询和文档 data = load_ir100_data("path_to_ir100.json") queries = data.get("queries", []) documents = data.get("documents", []) print(f"查询数量: {len(queries)}") print(f"文档数量: {len(documents)}") ``` ### 注意事项 如果需要进一步确认 IR100 数据集的具体信息,建议联系相关领域的研究人员或查阅最新的学术论文。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值