Efficient Video Object Segmentation via Network Modulation

本文介绍了一种高效视频分割方法,该方法通过注释首帧与视频输入生成视频掩膜。研究已在DAVIS2016、YouTube Objects及DAVIS2017数据集上进行了验证。论文提出三个关键组件:全卷积主分割网络、视觉调制网络和空间调制网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是CVPR2018的一篇关于efficient video segmentation的文章,paper链接https://arxiv.org/abs/1802.01218,作者的homepage https://sites.google.com/site/linjieyang89/,tensorflow的code已经被released出来了https://github.com/linjieyangsc/video_seg
文章要做的事情:
输入:annotated first frame+video   输出:video mask
文章中show出来的与其他方法做对比的exmaple如下所示。
exmaple
在 DAVIS 2016和YoutubeObjects datasets上面与state-of-the-art对比的实验结果如下所示。
DAVIS 2016 and YoutubeObjects
在DAVIS 2017 dataset上面与state-of-the-art对比的实验结果如下所示。
DAVIS 2017

method

paper的framework如下所示。
framwwork
framework主要分为下面的三部分:

  • fully-convolutional main segmentation network。
  • visual modulator network。
  • spatial modulator network。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值