今天批判性的聊聊数据治理。
最近跟几个圈子里的朋友喝茶闲聊,天南海北一通胡侃,最后话题还是拐回到数据治理这摊子事儿,然后大家开始吐槽:
"我以前看那些DAMA、DCMM、华为数据之道,就像看武功秘籍,什么委员会、责任人、建章立制、定标准、跑流程、上平台、买工具……刚开始特别激动,以为只要把这些‘模板化’拿来套,治理难题就能迎刃而解,结果一上线才知道,很多环节根本推不动........"
"当年我也信啊!一把手拍板支持,办公室挂牌,第一年那叫一个轰轰烈烈,感觉数据'新纪元'就要来了!"
"结果呢?领导换了,风向变了,之前搞的那堆东西,现在还剩啥?一堆没人看的文档,一个空壳委员会。凭良心说,那玩意儿当时就没真正'长'到业务流程里去!那点'间接价值',业务凭啥搭理你?"
"现在?呵,还不是靠几个老伙计天天'救火'续命!"
哥们儿的苦水,不是个例。
这是无数数据团队正在经历的"理论丰满,现实骨感"的真实写照。
我们似乎都在拿着各种"先进"的理论地图,要去开垦一片数据的沃土良田。
却忘了问一句:这地图跟你家那块盐碱地,配吗?给你地图的人,自己真种出过粮食吗?
01 | 管理的"空中楼阁" vs 技术的"苟且红利":理想与现实的残酷二选一?
咱们做数据治理,心里得门儿清。手里的活儿,说白了就两大块,但这两块在企业里的"待遇",那可是天差地别:
第一类:"管理派"的宏大叙事——试图绘制完美的蓝图
❶ 听起来"高大上"且"治本":
成立跨部门委员会、任命数据责任人、发布管理办法、定义上千个数据标准、梳理核心业务流程……
这套操作,充满了顶层设计的理性光辉,目标直指"根治"数据乱象,老板很容易上瘾。
❷ "理想丰满,现实骨感"
基因决定论:
但大多数公司的"基因",真的允许这么搞吗?
部门墙厚得跟城墙似的,流程固化得像化石,核心产品要变革都磕磕绊绊,指望为一个"看不见摸不着"的数据去动大手术吗?
企业的基因,"一出生实际就决定了",基业长青的书说了,大多数公司都是路径依赖,特别是传统企业,要它革自己的命,难!
理论"原罪":
那些理论,比如DAMA,大多是"舶来品",水土不服是常态。
更扎心的是,很多理论成型时,大数据还没出现呢,数据要素,数据确权,数据交易这些关键概念更是没影了,过去的这些“专家"怎么能预测这么多呢?自己更不可能干过。
或者就是在完全不同的企业土壤(比如华为那种舍得砸"巨量资源"搞流程再造的)里搞出来的,学不来。
我甚至觉得,照搬企业治理那套用在"数据要素"这个新物种上,本身就可能不适配,比如现在在提的数据资产入表,相对于传统生产要素,差异大了点。
价值"画饼":
数据治理那点"间接价值",怎么量化?
怎么让业务老大在KPI压力下,牺牲效率陪你玩?根本不足以吸引业务真正参与进来!
最后往往是IT部门唱独角戏,或者变成少数理想主义者的"行为艺术"。
❸ 结果:"人走政息"
一把手重视时,还能热闹一阵。
一旦风向变了,或者当初的推动者离开了,这套"空中楼阁"很快就"随着运营的缺失,慢慢失去了价值"。
第二类:"技术派"的务实求生——在泥泞中匍匐前进
❶ 看起来"没格局"但"管用":
下游发现数据脏了,与其去跟上游扯皮(大概率扯不清楚,或者人家根本不理你),不如自己写个脚本洗洗。
ETL报错了,赶紧修复。性能慢了,加索引优化。
问题明确具体,小快灵,自己能搞定。
❷ "存在即合理":
虽然这无法根治问题,甚至有点"头痛医头",但它"短时期适应了当前的企业生产关系"!
它保证了数据能用,业务不停摆。在很多情况下,这已经是能争取到的最好结果了。
对外界依赖度低,更容易成功拿到结果。
❸ 享受"苟且红利":
是的,你没看错,是"红利"。因为这种方式成本低(相比推动全局变革)、见效快、风险小。
虽然不完美,但它让系统活下来了。
💡 核心的拧巴在哪?
在于我们往往用"管理派"的理想去评判"技术派"的现实,用"治本"的口号去否定"治标"的价值。
结果就是,管理治理搞不下去,技术治理又被认为是"没水平",两头不落好,最终大家一起在泥潭里打滚。
02 | 看不见的"选择":为什么"救火"才是常态,甚至是最优解?
当资源有限、时间紧迫、组织掣肘成为常态时,那些看似"被动"的救火,背后其实隐藏着企业的"理性选择"。
现象一:"源头治理"?说得轻巧!源头TM在哪儿? ❓
总有人喊着要"从源头治理"。说得好听!
一个数据,从业务人员录入开始,流经N个系统,经过N次加工转换,哪个环节是"源头"?
是最初的录入规范没做好?("存量流程尽量不要动,影响效率,包袱太大!")
是中间的业务流程设计有问题?("先得有业务,再有流程,治理是非常后面的事情!")
是技术接口传输丢了数据?
还是来源于"不可控的第三方"?(这你怎么"源头"法?)
所谓的"源头治理",往往是一个极其复杂、牵扯极广的问题。强行推进,大概率是"做事不分主次",或者直接把业务搞黄了。
现象二:"救火"是业务优先的"最小代价"策略 🔥
下游数仓团队抱怨数据脏,OLAP跑不出好结果。但上游OLTP团队为了保证交易顺畅和效率,可能就认为牺牲点数据规范性是值得的。
谁对谁错?没有谁比谁更高级!这是不同环节的"站位问题"和"优先级问题"。
在这种情况下,下游通过清洗、转换、补偿来"救火",虽然麻烦,但相比去改造上游核心交易系统,"这个代价对企业来讲其实最小"!
要承认,"救火"体现了业务优先的原则,它就是很多场景下的合理选择!
现象三:"完美治理"是奢侈品,多数人需要的是"经济适用房" 🏠
追求数据的绝对干净、完全标准,就像追求住进完美无瑕的豪宅。这需要巨大的投入和持续的维护。
"狭义范围的数据治理,本质上是富人要考虑的事情。"
对于大多数还在求生存、谋发展的"中产和穷人"来说,首要任务是盖一个能遮风挡雨、基本功能齐全的"经济适用房"。
数据能用、大致准确、别出大乱子,可能就够了。
过度追求"完美",反而可能拖垮自己。"容忍数据瑕疵的存在",可能是一种更成熟、更务实的心态。
自己在做主数据时也有感觉,除非业务真要塌了,否则为了看起来不舒服的那几个流程断点就大张旗鼓的去做,经济上是不划算的,而且做完主数据你会发现,主数据本身又会带来新的问题。
03 | "夹心饼干"的呐喊:别跟我谈方法论,给我几个能打的"兵"! ⚔️
作为数据负责人,或者数据治理的推动者,你是不是也经常感觉自己像个"夹心饼干"?
向上,要讲DAMA、DCMM,要画蓝图,要显得专业、有规划。
向下,要面对一堆烂摊子,要安抚天天救火、怨声载道的兄弟们。
对内,还要跟自己的"良知"打架:明知道很多管理措施是"屠龙之技",为了交差还得硬着头皮推。
这种拧巴,根源在哪儿?
在于我们把希望寄托在了"方法论"和"工具"上,而忽略了真正能解决问题的,是"人"!
关键时刻,救你命的,从来不是那本厚厚的制度手册,而是那个关键的"人"!
- 重大故障谁来扛?
系统数据突然对不上,业务面临巨大风险。这时候靠规则?规则覆盖不了"随机性"!靠的是那个懂数据、懂业务的"工匠",靠他"随机应变"找到症结,拿出方案!
- 安全事件谁破解?
日志里找非法代码,靠的是顶尖的"专家"!
- 平时的小火谁来灭?
靠的是那些经验丰富的"救火队员"!
这些人,才是你数据不出大乱子、能在关键时刻"续命"的底牌!他们的价值被远远低估了!
Deepseek梁文峰就说了:"我们锻炼起来的队伍才是核心竞争力!"
数据治理的核心竞争力,不是你掌握了多少理论,而是你有没有一支"锻炼起来的队伍"!
04 | 破局之路:放弃"治理洁癖",拥抱"人才红利" 🧑💻
困局难解,但死局并非无路可走。出路可能就在于转变我们的认知:
第一,从"消灭救火"转向"高效救火 + 工匠压阵" 👨🚒
要承认,"救火"是常态,可能永远无法消灭。与其跟它死磕,不如想办法:
- 容忍小的瑕疵,让小的救火效率更高。
比如用智能化、自动化手段辅助发现和修复一些常见问题。
别动不动就想"举一反三"挖根源,"根子问题最终会推理出企业基因问题,这个不是你能解决的!"
- 识别和培养"工匠"人才。
让他们成为处理重大、复杂问题的"尖刀连"。
给他们授权,给他们资源,让他们在关键时刻能顶上去。
第二,治理的重心从"建体系"转向"建人才池" 🏊
"人既然是数据治理的第一要务",那最靠谱的做法是什么?
- 给数据团队加编制!别扯没用的,人手都不够,谈什么治理?
- 建立人才池!不仅要有干活的,还要有能带队的,有能攻坚的专家。
- 营造好的成长和流动环境!让技术人员有盼头,让他们的经验能沉淀、能传承。
- 让人才"溢出"到业务部门!这才是真正改变数据文化的"长期主义"做法。
虽然可能要"寄希望于下一代",有点悲伤,但这就是"大道和规律"。
第三,让"工匠"成为治理的"导航员" 🧭
当你的"工匠"队伍成长起来后,他们"就真的能做到知行合一"。
他们会基于实践经验,帮你判断:
- 哪些场景,投入产出比高,值得用体系化的方法去"举一反三"解决。
- 哪些场景,要么代价太大,要么企业基因不行,"不要强行做,这个违背世间的大道和规律"。
让听得见炮火的人来指挥战斗!
小结 📝
数据治理这场仗,打了这么多年,我们还是要重新思考下是否该换个打法。
不要只捧着那些"放之四海而皆不准"的理论当圣经。
不要鄙视那些看似"苟且"的技术手段和"救火"行为了,它们往往是现实约束下的理性选择。
成功的关键,不在于你用了多"先进"的方法论,而在于你手里有多少真正"能打"的人,没有人,你连啥是"先进"都搞不清楚。
放弃对"完美治理"的洁癖和幻想,拥抱现实的复杂性和不确定性。
把资源和精力,从购买那些昂贵却可能水土不服的"军火"(理论、工具),转向投资和建设你自己的"特种部队"(人才池和工匠队伍)。
这,可能才是你走出数据治理泥潭,唯一靠谱的路。
祝好。
公众号推送规则变了,如果您想及时收到推送,麻烦右下角点个在看或者把本号置顶!