"我们部门准备上个大模型,赋能销售签单!"
"听起来很棒!具体解决销售哪个环节的什么问题?现在痛点有多大?能带来多少明确的签单提升?"
"呃… 就是… 感觉能提升效率,让销售更智能?"
这样的对话,你是不是也经常听到?
自打大模型火了,空气里就飘着一股"AI 焦虑"。甭管是互联网大厂还是传统企业,老板、业务、技术,人人都怕掉队,纷纷要求"必须搞点大模型"。
结果呢?大量资源砸下去,项目吭哧吭哧搞了半年,最后发现:要么解决的是假问题,要么技术根本不达标,要么就是自家组织能力跟不上。
行业里普遍的共识是,AI 项目失败率高得惊人(多家咨询报告如 Gartner, McKinsey 指出趋势,具体数字虽有差异,但失败率高是事实)。一个千万级的项目,悄无声息地翻车,不是危言耸听。
所以,今天这篇"枪毙指南",就是帮你练就火眼金睛,精准识别并有理有据地毙掉那些不靠谱的大模型伪需求,把钱和精力用在刀刃上。同时,也给那些真正有潜力的探索,留下一条控制风险的活路。
第一关:基础"安检",30 秒过滤"三无"项目
任何需求提案,先别急着激动,迅速过一遍这三道基础安检。通不过的,基本属于信息缺失、思考不足的"三无产品",可以直接毙掉。
1️⃣ 安检口 1:问题说清了吗?
- 拷问 ✅: 必须说清解决的具体、可量化业务痛点?影响谁?频率?现状多糟(数据支撑)?
- 毙掉信号 ❌: 问题模糊,痛点无法量化,纯属"感觉应该做"。
2️⃣ 安检口 2:非 AI 不可吗?
- 拷问 ✅: 有没有更简单、便宜、成熟的替代方案?成本效益对比如何?
- 毙掉信号 ❌: 杀鸡用牛刀,为了用 AI 而用 AI。
3️⃣ 安检口 3:成功咋衡量?
- 拷问 ✅: 成功的标准是啥?必须是具体、可量化的 KPI,并与核心业务指标挂钩。
- 毙掉信号 ❌: 目标空泛,无法衡量,无法评估 ROI。
⚡️ 扪心自问:你团队那个项目,30 秒内能讲清这三点吗?讲不清,大概率就是坑!
第二关:三面照妖镜,深度拷问价值与可行性
过了基础安检,说明提案至少"像那么回事儿"了。接下来,进入深度"体检"环节,用三面镜子把它照个透。
📌 需求照妖镜:这需求,真硬核还是豆腐渣?
地基不牢,楼必垮。需求本身的可靠性是重中之重。
- 拷问 1.1:刚需?(用户真疼?) 没了它行不行?
- 拷问 1.2:高频?(天天用?) 能嵌入核心流程吗?
- 拷问 1.3:价值显著?(能带来真金白银?) 效率、成本、收益、体验,必须量化!
- 拷问 1.4:使用门槛低?(用户会不会/愿不愿用?) 学习成本、交互复杂度如何?
- 拷问 1.5:替换成本可控?(换起来麻不麻烦?) 迁移、培训、组织阻力大不大?
案例 A (毙掉): 某内容平台想用 LLM 自动给文章打"情感标签"。需求镜结果: 标签对推荐系统价值有限(价值不显著),人工标注成本不高且准确(替换价值低),编辑对 AI 标签信任度低(使用门槛/信任问题)。判决: 毙!投入产出不成比例。
✅ 如果需求够硬核,你就抓住了增长的牛鼻子,比 90% 的跟风者领先半步!
🛠️ 技术照妖镜:大模型这把刀,够不够快准狠?
需求再好,工具拉胯也白搭。
- 拷问 2.1:大模型能力达标?(AI 能不能打?)
- 核心指标: 精度/召回率/F1 等,必须达到业务最低容忍线(如:客服意图识别 F1 > 0.85)。
- "智障"风险: "幻觉"率(如:内容生成事实错误率 < 2%)、偏见问题是否可控?
- 可解释性: 高风险场景下能否提供决策依据?
- 技术选型: 开源 vs 闭源?通用 vs 垂直?(如:处理医疗文本,通用模型常需大量微调或不如垂直模型)。成本(如:推理成本 $/1k tokens)是否算清楚了?
- 拷问 2.2:算力够烧吗?(发动机带得动吗?) GPU 成本、供应稳定性如何?
- 拷问 2.3:数据喂得好吗?(粮草精不精?) 高质量、合规、特别是领域数据是否充足?更新机制?(注意:《数据安全法》、《个人信息保护法》红线!)
- 拷问 2.4:工程化落地行不行?(实验室到产线) 集成复杂度?部署运维能力?
案例 B (毙掉): 某零售商想用 LLM 做"千人千面"营销文案实时生成。技术镜结果: 现有闭源模型生成内容同质化严重,无法满足个性化要求;微调所需的用户行为数据质量差且标注成本高;实时推理对现有系统压力巨大。判决: 毙!技术和数据瓶颈短期难解。
✅ 如果技术底座扎实,你的 AI 应用就有了腾飞的翅膀!
👥 组织照妖镜:咱这庙,养得起这尊佛吗?
天时地利都有了,关键看"人和"与"家底"。
- 拷问 3.1:领导真心支持?(是真爱还是作秀?) 愿意给资源、担风险、持续投入吗?
- 拷问 3.2:人才队伍齐整?(活谁干?) 懂业务、产品、算法、工程、运维的关键角色有吗?能力达标吗?
- 拷问 3.3:IT 基建跟得上?(家里地基牢吗?) 网络、服务器、数据平台、安全体系能不能支撑?
- 拷问 3.4:钱袋子够鼓?(弹药足不足?) 预算覆盖全周期吗?可持续吗?
- 拷问 3.5:组织机制顺畅?(规矩管用吗?) 项目管理、跨部门协作、数据治理、风险控制、(注意:算法备案等合规流程!) 推广机制到位吗?
案例 C (成功启动): 某大型银行用 LLM 优化内部合规文档审核。组织镜结果: 合规是业务痛点,高层战略支持;组建了包含业务专家、法务、IT、AI 工程师的专项团队;投入专项预算采购私有化模型和算力;建立了清晰的试点、评估、推广流程。判决: 组织准备充分,启动!
✅ 如果组织给力,你的 AI 项目才能真正落地生根,开花结果!
"大模型项目翻车,要么死在需求上,要么死在技术上,要么死在组织上。想成功?这三关都得硬!"
第三关:特殊通道,给"探索型"项目松绑,但要上锁
好了,严格的审视之后,我们得承认,有些项目,尤其是那些瞄准未来的"铁蛋"(探索型),按上面的标准可能直接就毙了。但创新往往就在这些不确定性里。对它们,我们要开启特殊评估通道:
🔍 评估重心切换:不看短期 ROI,看长远价值
- 学习价值 ✅: 最重要的产出是认知!能帮我们搞懂啥关键未知?(数据?技术?用户?团队短板?)学习目标必须清晰。
- 能力建设 ✅: 能不能沉淀下可复用资产(工具?流程?人才?)?
- 假设验证 ✅: 是否在验证一个重要的战略假设?允许并鼓励"有价值的失败"。
- 战略卡位 ✅: 能否在未来赛道上抢占身位?(需结合市场和竞争分析)
🔒 严格控制探索风险(给探索拴上"缰绳")
- 分阶段投入 ️⏱️: 小步快跑,小额预算,短周期,设检查点,不行就停。
- 时间盒管理 ⏳: 设定明确的时间期限,防止无限期拖延。
- 预算封顶 💰: 划定总投入红线,强制聚焦。
- 原型/MVP 优先 💡: 用最小成本快速验证核心假设。
- 拥抱并复盘失败 📝: 允许失败,但必须从中学习,知识共享。
探索不是瞎闯,是带着地图(学习目标)、背着有限干粮(预算)、规定好时间(时间盒)、随时准备调整路线(检查点)的"有控制的冒险"。 那些打着探索旗号,既无学习目标,又无风险控制的"伪探索",照样毙!
第四关:拒绝的艺术,如何优雅而坚定地说"不"
最终,"枪毙"是必要的。如何沟通,决定了效果和影响:
- 拿出"体检报告": 用评估框架和数据说话,指出具体短板。
- 回归商业与战略: 强调决策基于资源、优先级和公司目标。
- 坦诚现实挑战: 客观说明 LLM 的局限、成本和风险。
- 给出建设性反馈(如果可能): 指出替代方案或前置条件。
- 依靠标准化流程: 让制度说话,减少人情干扰。
"枪毙一个伪需求,就是给真创新腾地方、省弹药。这恰恰是对业务最大的负责。"
终极小结
大模型浪潮汹涌,既要顺势而为,也要保持清醒。这套"基础安检 + 三面照妖镜 + 探索特殊通道 + 风险控制缰绳"的评估框架,希望能帮你:
- 快速过滤掉噪音。
- 深度拷问潜在价值与可行性。
- 差异化对待不同类型的需求。
- 有效控制探索风险。
- 果断、透明、建设性地做出决策。
"少犯一个千万级错误,有时比抢到一个亿级机会更重要。尤其是在风口浪尖时。"
最终目的,是让大模型真正成为驱动业务增长的引擎,而不是吞噬资源的"黑洞"。
公众号推送规则变了,如果您想及时收到推送,麻烦右下角点个在看或者把本号置顶!