从数仓到GPT时代,我用30张图总结了20年数据架构演进史

从事数据工作20年,我发现了这么一个现象,很多技术人员都存在重复造轮子或者一叶障目的问题,因为视野的限制。

如果总有一张实时更新的数据架构演进图摆在面前,我想大家会少走很多弯路吧。

这次,我有机会把整个数据技术领域的演进史,用30张架构图完整得展现出来。

从1990年代的Oracle单体数据库,21世纪初的数据仓库,到2024年爆火的向量数据库;从简单的主从复制,到复杂的联邦学习;从GB级数据到PB级数据的处理……

这不是一篇普通的技术文章,而是一份珍贵的架构师成长地图

建议你先收藏,因为接下来的内容信息密度很高,一次很难完全消化。

一、传统数据架构

1. 单体数据库架构

  • 所有数据存储在单一数据库中

  • 典型代表:Oracle、SQL Server、MySQL单实例

  • 特点:简单直接,但扩展性有限

2. 主从复制架构

  • 一主多从,读写分离

  • 解决读压力问题

  • 典型应用:MySQL主从复制

3. 数据仓库架构(EDW)

  • 企业级数据仓库

  • 典型代表:Teradata、Oracle Exadata、IBM Netezza

  • 特点:强一致性、高性能查询

4. 操作数据存储(ODS)

  • 介于OLTP和数据仓库之间

  • 提供近实时的集成数据视图

  • 用于操作型报表

5. 数据集市架构

  • 部门级小型数据仓库

  • 面向特定业务领域

  • 可独立或作为EDW的子集

二、大数据时代架构

6. MPP架构(大规模并行处理)

  • 典型代表:Greenplum、Vertica、ClickHouse

  • 特点:横向扩展、并行计算

  • 适合结构化数据分析

7. Hadoop生态架构

  • HDFS + MapReduce + Hive/HBase

  • 典型组件:YARN、Spark、Impala

  • 特点:处理海量非结构化数据

8. Lambda架构

  • 批处理层 + 速度层 + 服务层

  • 同时处理历史数据和实时数据

  • 典型实现:Hadoop + Storm/Spark Streaming

9. Kappa架构

  • 简化的Lambda架构,只有流处理

  • 一切皆流的理念

  • 典型实现:Kafka + Flink/Spark Streaming

10. 数据湖架构

  • 原始数据集中存储

  • Schema-on-Read

  • 典型实现:HDFS、S3、Azure Data Lake

三、云原生架构

11. 云数据仓库

  • 典型代表:Snowflake、Redshift、BigQuery

  • 特点:弹性扩展、存算分离

  • 按需付费模式

12. Serverless数据架构

  • 无需管理基础设施

  • 典型代表:AWS Athena、Azure Synapse Serverless

  • 特点:零运维、自动扩展

13. 多云/混合云架构

  • 跨多个云平台部署

  • 避免厂商锁定

  • 典型工具:Databricks、Cloudera

四、实时数据架构

14. 流数据平台架构

  • 典型代表:Kafka、Pulsar、Kinesis

  • 支持实时数据摄入和处理

  • 事件驱动架构基础

15. HTAP架构(混合事务/分析处理)

  • 同时支持OLTP和OLAP

  • 典型代表:TiDB、CockroachDB、AlloyDB

  • 实时分析生产数据

16. 实时数仓架构

  • 典型代表:Apache Doris、StarRocks、Druid

  • 亚秒级查询延迟

  • 支持高并发查询

五、现代融合架构

17. 湖仓一体(Lakehouse)

  • 数据湖 + 数据仓库特性

  • 典型代表:Delta Lake、Apache Iceberg、Apache Hudi

  • 统一批流处理

18. 数据编织(Data Fabric)

  • 智能化数据集成

  • 自动化数据发现和治理

  • 典型厂商:IBM、Denodo

19. 数据网格(Data Mesh)

  • 去中心化、领域驱动

  • 数据产品化思维

  • 联邦式数据治理

20. 数据虚拟化架构

  • 逻辑数据层

  • 无需物理移动数据

  • 典型产品:Denodo、Dremio

六、特定场景架构

21. OLAP立方体架构

  • 多维数据分析

  • 典型代表:SSAS、Kylin、Mondrian

  • 预计算聚合结果

22. 图数据架构

  • 处理关系型数据

  • 典型代表:Neo4j、TigerGraph、JanusGraph

  • 适合社交网络、知识图谱

23. 时序数据架构

  • 优化时间序列数据存储

  • 典型代表:InfluxDB、TimescaleDB、IoTDB

  • 适合物联网、监控场景

24. 向量数据库架构

  • 支持高维向量存储和检索

  • 典型代表:Pinecone、Weaviate、Milvus

  • 用于AI/ML、相似性搜索

25. 联邦学习数据架构

  • 数据不移动,模型移动

  • 保护数据隐私

  • 跨组织协作

七、新兴架构

26. 零ETL架构

  • 减少数据移动

  • 源系统直接分析

  • 典型实现:AWS Zero-ETL

27. 数据共享架构

  • 跨组织数据共享

  • 典型代表:Snowflake Data Sharing

  • 数据市场概念

28. 增强分析架构

  • AI驱动的数据分析

  • 自动化洞察发现

  • 自然语言查询

29. 边缘计算数据架构

  • 数据在边缘处理

  • 减少延迟和带宽

  • IoT场景常用

30. 区块链数据架构

  • 分布式账本

  • 不可篡改性

  • 用于数据溯源

看到这里,你已经完成了一次时空穿越。

从Oracle的独霸天下,到Hadoop的开源革命;

从Lambda的批流统一,到Lakehouse的湖仓一体;

从Zero-ETL的极简主义,到向量数据库的AI原生……

这30张图,不仅是技术的演进史,更是一代又一代工程师智慧的结晶。

我曾经问过一位在大厂工作了15年的架构师:'什么是好的架构?'

他说:'好的架构不是没有问题,而是为未来的问题预留了解决方案。'

今天,当你掌握了这30种架构模式,你就拥有了30种解决问题的思路。当别人还在为选型纠结时,你已经能够根据场景快速做出最优决策。

记住:懂架构的人改变世界,懂演进的人引领未来。

分享给有需要的人!

图片

图片

公众号推送规则变了,如果您想及时收到推送,麻烦右下角点个在看或者把本号置顶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傅一平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值