用了AI两年,我的大脑开始生锈,到底错在哪里?

最近,硅谷一位资深工程师的文章在朋友圈刷屏,标题引人深思:"工作五年,我好像忘了怎么手写反向传播"

他复盘了自己如何从"通宵啃论文"的专家,变成一个依赖AI生成代码和报告的"提问机器",并担忧自己正陷入"认知外包"的陷阱,深度思考的能力正在钝化。

他说的不是空穴来风。

我也是个AI重度使用者,经常会用AI来提供写作素材和思路,有时就在想:

AI再智能一点,以后我输入几个文章关键词,AI秒出答案,我稍加修改润色,一篇文章就成了,那该多好啊。

因为我不再需要像以前一样,想思路、查资料、熬夜推敲每个字句,甚至买书籍进行补课。

但然后呢,我又会反问自己:

"长此以往,写文章还有什么意义?

一方面大家都在比拼AI和提示词了,另一方面,自己也没获得实质性提升,写文章变成了枯燥的编辑和审核工作,没有喜悦可言......"

这种焦虑是真实的,我们不禁会问:AI会让我们变笨吗?

一个流行的、充满赋能感的答案是这样的:

💡 "真正的问题,不是AI让我们退化了,而是我们大多数人,还停留在最低阶的使用方式上。"

这个观点很有启发性,它将我们从对技术的恐惧中拉回,转向审视自身。它告诉我们,主动权在我们手中。

这当然是事实的一部分,也是本文讨论的起点。

但如果止步于此,就像只看到水面上的冰山一角,我需要的是更深层次的真相。


01 第一层思考:"技能退化"还是"技能迁移"?—— 一个乐观的开端

我首先会想到,那位工程师忘了手写代码,真的是能力退化吗?

一个常见的类比是:

📊 "就像善用计算器的会计,他不再需要精通心算,因为他的能力已经迁移到了财务分析和战略规划上。"

这就是乐观的"技能迁移"论。它认为,AI帮我们处理了繁琐的执行,让我们能专注于更有价值的创造。

✅ 这个观点有它的合理性:

它鼓励我们跳出"技能固化"的陷阱。比如,一个营销经理不再需要花半天时间用Excel拉数据、做图表,AI可以在几分钟内完成。他便可以将省下的时间,用来洞察数据背后的消费者行为,这无疑是一种价值升级。

💡 此时的结论是:

AI不是要取代我们,而是要升级我们。它淘汰的,只是那些抱着旧地图,不愿寻找新大陆的人。

然而,这个乐观的类比,真的没有漏洞吗?


02 第二层思考:迁移的代价与"能力空心化"的风险

现在,让我对上面的观点提出第一个挑战:

❓ 如果会计从一开始就只会按计算器,却不懂基本的借贷记账法,他能做财务分析吗?

答案显然是否定的。

但这里需要更细致的区分。重要的不是你是否还记得所有细节,而是你是否掌握了底层的思维框架。

一个优秀的程序员可能忘记了某个算法的具体实现,但他仍然理解算法的时间复杂度、适用场景和设计思路。

🎯 这就带来了一个更精确的观点:

AI带来的并非简单的"技能迁移",而是一场对"能力结构"的重塑。这个过程有三种可能的路径:

🌟 健康的进化

你已经内化了核心原理(如编程思维、数学直觉),现在借助AI工具,让你能更快地实现想法、验证假设。就像钢琴家使用电子琴编曲,技术扩展了表达的边界。

⚠️ 有风险的依赖

你掌握了一定基础,但过早地完全依赖AI,导致基础能力逐渐生疏。这就像学了两年钢琴就完全依赖自动演奏,最终可能连基本的节奏感都会退化。

🚨 危险的空心化

你从未真正理解过原理,直接跳到使用AI。这就像从未学过音乐理论,却试图用AI作曲,结果只能是机械的拼贴。

💡 此时的结论深化为:

AI应该是专业人士的"外骨骼",而不是新手的"速成捷径"。

关键在于,你是在什么阶段、以什么方式引入AI辅助。

这自然引出了下一个问题:如果道理都懂,为什么现实中第三种情况如此普遍?


03 第三层思考:"个人选择"还是"系统塑造"?—— 重新定义问题

我们很容易将问题归咎于个人:"是你自己懒,是你没有选择更高阶的用法。"

但这种归因忽略了一个重要事实:我们的选择从来不是在真空中做出的。

就像超市把糖果放在收银台旁边,不是因为那里空间合适,而是精心设计的"选择架构"。

让我们看看AI时代的"选择架构"是如何运作的:

📱 案例一:产品设计的即时满足倾向

主流AI工具都在优化"响应速度"和"答案完整度"。当你提问,它立即给出看似完美的答案。

这种设计逻辑类似于社交媒体的"无限滚动"——通过即时满足来创造依赖。

相比之下,那些需要多轮对话、逐步深入的使用方式,在产品设计上就处于劣势。

📊 案例二:效率导向的评价体系

在许多公司,"用AI提升效率"已经成为KPI。但"效率"往往被狭隘地定义为"产出速度"。

一个每天用AI生成10份报告的员工,可能比花时间深度思考、只产出1份高质量报告的员工更受青睐。

这种评价体系实际上在惩罚深度工作。

💰 案例三:知识付费的"技巧化"趋势

市面上充斥着"10个ChatGPT提示词让你效率翻倍"的课程,却很少有人教"如何培养与AI协作的思维框架"。

因为前者可以速成、易于营销,后者需要长期积累、难以量化。

🎯 认知的再次升级:

这不是简单的"个人懒惰"问题,而是一个"个体理性与集体困境"的博弈。

在当前的激励结构下,选择"快餐式"使用AI,对个人来说可能是理性的短期策略。

但这种"系统塑造"带来了一个更深层的后果:

它不仅影响着我们如何使用AI,更在悄然改变着谁能真正从AI中获益。当"快餐式使用"成为主流,那些有能力进行"深度使用"的人反而获得了更大的相对优势。

这就把我们引向了下一个关键问题:在这样的环境下,不同背景的人使用AI的差距是在缩小还是在扩大?


04 第四层思考:从"技能差距"到"能力鸿沟"——一个被掩盖的真相

面对上述问题,一个常见的回应是:

每个人都可以通过学习"人机协作四层模型"(替代、辅助、增强、启发)来提升自己的AI使用水平。

这听起来就像一个公平的游戏——只要你愿意学习和进步,就能不断升级。

但让我们诚实地审视现实:

为什么同样是使用AI,有人停留在"替代"层面,有人却能达到"启发"层面?仅仅是因为后者更努力吗?

🎹 一个更准确的比喻是:

AI就像一架钢琴,理论上每个人都能弹,但实际效果天差地别。

这种差别不仅来自练习时间,更来自你是否:

  • 🎵 有音乐理论基础(对应专业领域知识)
  • 👂 有听力训练(对应批判性思维)
  • 🎨 有审美积累(对应跨学科视野)
  • 👨‍🏫 有名师指导(对应高质量的学习资源)

让我们看看现实中的对比:

💼 资深投资分析师使用AI:

"基于美联储最新的利率决议和过去20年的历史数据,帮我分析本轮加息周期可能出现的三种情景,并评估对科技股估值的影响。"

AI成为他的智囊团。

📚 金融专业大学生使用AI:

"什么是市盈率?"或"帮我写一份股票分析报告。"

AI只是他的百科全书或代写工具。

🤷 完全没有金融背景的人:

可能连该问什么问题都不知道,只能问:"哪只股票会涨?"

❗ 看到问题了吗?

AI不是在消除差距,而是在放大差距。它就像一个"能力放大器"——你的基础能力越强,放大效果越明显,强者越强这个理论在AI时代会被无限放大。

这种"能力鸿沟"的形成有其结构性原因:

  • 📖 高质量的AI使用需要大量隐性知识,这些知识往往通过长期专业训练才能获得
  • 💳 优质的AI工具和API往往需要付费,形成了新的"数字门槛"
  • 🔒 最先进的使用方法往往在专业圈子里流传,信息本身就不对称

当我们意识到这种结构性差距的存在,一个关键的概念浮出水面——我们需要重新思考在AI时代,什么是真正的"认知公平",如何才能确保每个人都有机会成为AI的主人而非奴隶?


05 第五层思考:重新定义"认知主权"——从个人奋斗到结构性权利

面对上述的能力鸿沟,一个自然的反应是强调个人责任:

"每个人都应该努力学习,提升自己,守住自己的'认知主权'。"

这个建议本身没错,但如果仅止于此,就像告诉溺水的人"你应该学会游泳"——正确但不够。

因为当前的"认知主权"面临的威胁不仅来自个人能力不足,更来自结构性的不对等。

想象一下:

  • 🔒 当AI的训练数据、算法逻辑都是黑箱,你如何知道它给你的答案是否有偏见?
  • 📊 当你的所有数字痕迹都被用来"优化"对你的推送,你还有真正的选择自由吗?
  • ⏰ 当AI系统的设计目标是"最大化用户使用时长"而非"最大化用户成长",你的努力是否在与系统对抗?

因此,我们必须扩展"认知主权"的内涵,让它不仅是一种个人品质,更成为一组应被保障的权利:

1️⃣ 透明权

我有权知道AI如何工作,它的局限在哪里

  • 就像食品必须标注成分,AI也应披露其"认知成分"

2️⃣ 选择权

我应能选择AI的工作模式

  • 不只是"快速模式",也要有"学习模式"、"探索模式"

3️⃣ 发展权

社会应提供支持深度学习的环境

  • 不能让"快"成为唯一的价值标准

4️⃣ 参与权

作为受影响者,我们应参与AI规则的制定

  • 用户不应只是被动的使用者

这意味着维护认知主权需要多层次的行动:

👤 个人层面

是的,我们需要保持学习,培养批判性思维。但也要认识到个人努力的边界,学会识别和抵制系统性的操纵。

🏢 组织层面

企业和教育机构需要创造"慢思考"的空间。比如,一些前沿科技公司开始设立"深度工作日",禁止使用即时通讯工具,鼓励员工进行深度思考。

📜 政策层面

需要建立AI的"营养标签"制度,强制披露算法的基本逻辑;需要"AI影响评估"机制,评估新技术对认知能力的长期影响。

💻 技术层面

开发"增强型"而非"替代型"的AI工具。比如,不是直接给答案,而是通过苏格拉底式的提问引导用户思考。

当然,以上这样,都可能是我的异想天开。


💭 最终结论:在复杂生态中寻找平衡点

回到最初的问题:AI会让我们变笨吗?

现在我可以给出一个更细致的答案:

🎯 AI本身是中性的工具,但它被嵌入的社会-技术系统却不是中性的。

在当前的发展轨迹下,确实存在认知能力两极分化的风险。但这种风险不是技术决定论的必然结果,而是可以通过有意识的设计和干预来缓解的。

对于个人而言,明智的策略是:

1、区分"工具"和"拐杖"

AI应该是工具,而不是拐杖。

工具是什么? 是你已经会走路,工具让你走得更快。 

拐杖是什么? 是你不会走路,没有它你寸步难行。

判断标准很简单:

如果没有AI,你还能不能完成这项工作?

如果不能,那AI对你来说就是拐杖。

你需要警惕了。

2、保持"困难模式"的训练

就像运动员需要负重训练,我们的大脑也需要"困难模式"。

我的做法是:

  • 重要的思考和创作,先自己完成初稿,再用AI优化
  • 定期做一些"原始"的练习,比如手写日记
  • 设立"无AI工作区",在重大决策任务中完全依靠个人直觉

这些看似"低效"的练习,其实是在维护你的核心能力。

3、从"使用者"变成"驾驭者"

真正的高手,不是不用AI,而是能驾驭AI。

什么叫驾驭?

  • 你知道AI的答案对不对
  • 你能判断AI的建议好不好
  • 你能引导AI产出更好的结果
  • 你理解AI的能力边界和潜在偏见

这需要你在专业领域有足够的积累。

否则,你只是AI的"传声筒"。

4、建立"思考先行"的习惯

遇到问题,先给自己5分钟思考时间:

  • 这个问题的本质是什么?
  • 有哪些可能的解决方案?
  • 我的初步判断是什么?

有了自己的思考后,再去问AI。

这时AI的作用是"查漏补缺",而不是"替代思考"。

反问自己:"如果没有AI,我会得出同样的结论吗?"

5、培养"AI抵抗性技能"

什么是AI抵抗性技能?

就是那些AI难以替代的能力:

  • 深度理解力:不是知道"是什么",而是理解"为什么"
  • 批判性思维:质疑、验证和独立判断的能力
  • 创造性连接:看似无关事物之间的连接能力
  • 情境判断力:处理独特情境和例外情况的能力
  • 共情与情商:理解和连接他人的能力
  • 伦理判断:在复杂情境下做出符合价值观的决策

这些能力,恰恰是在AI时代最稀缺、最有价值的。

而对于社会而言,需要思考的是:

  • ❓ 如何设计更好的AI工具,支持而非替代人的成长?
  • ❓ 如何建立制度,确保AI增强人的能力而非加剧不平等?
  • ❓ 如何在效率与深度、速度与质量之间找到平衡?

当然,这不是我能控制的。

小结

"AI不会取代你,但会用AI的人会取代你。"

这句话现在很流行。

很遗憾,这话其实只说对了一点点。

在AI时代保持认知能力,需要的不仅是个人的觉醒,更需要系统性的应对。这是一场需要个人、组织、社会共同参与的长期博弈。

💡 AI确实可能成为我们最好的副驾,但前提是,我们不仅要坐稳驾驶位,还要参与道路规则的制定,甚至要思考:我们究竟要驶向何方?

图片

图片

公众号推送规则变了,如果您想及时收到推送,麻烦右下角点个在看或者把本号置顶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傅一平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值