少谈数据治理,多做点数据管理和数据执行,这才是王道!

数据治理,数据管理及数据执行三类活动别看只有2字之差,但实际的工作内涵大大不同,没搞清楚之间的区别,开展数据治理工作就会特别拧巴。

自己做数据治理多年,教训不可谓不多,今天就来谈一谈。

假如老板问:"公司要搞数据治理,具体干点什么事?要配多少资源?"

你作何回答?

有人可能会脱口而出:"要建章立制,要打通各部门数据壁垒,要解决重大数据质量问题,对了,还要建立主数据系统,还有....,这么多事情,至少10个人吧!你看华为配置有50人呢,因此,后续还要增加...."

我以前也这么想,但这是对数据治理的误解。

虽然数据治理的目标原则上可以包括以上这些内容,但并不意味着你就要管那么多事,因此需要那么多的人。

大多时候,我们并没搞清楚哪些是数据治理(你的团队)要干的事情,哪些是数据管理(其他管理部门)要干的事情,哪些是数据执行(一线部门)要做的事情。

归根到底,还是我们对数据治理的本质有误解。

我们当然可以很轻松的说没必要在数据治理,数据管理,数据执行上咬文嚼字,先干了再说。

但实践后,我觉得就是因为当初没搞清楚,因此走了很多弯路。

因为这已经严重影响到工作中职责的分工,资源的分配。

如果你认为自己真的是在干数据治理,就得搞清楚,否则,就是瞎干。

一、数据治理的本质

那么,数据治理工作的本质是什么呢?

有人找了这个定义:数据治理即数据资产管理过程中行使权力和控制的活动集合,包括规划、监控与执行等。

但估计大多人看了也没感觉,我以前也是。

现在我就用身边事,给大家解释一下。

首先问个问题,请问你对公司信安部门的印象是什么?

大多数答案可能是这样:

1、工作偏务虚,至少跟生产没多大直接关系

2、经常发布安全管理制度,传达上级单位的安全管理要求

3、拿着这些制度,每天不是在应对上级检查的路上,就是在检查别人的路上

4、老是通报这通报那,权力有点大

5、找你准没好事

嗯,看起来这个部门有点讨厌。

但这个部门干的事情,其中数据安全部分,就是典型的数据治理工作。

因此,前面那个DAMA定义,还是比较严谨的,只是我们可能并没有很好的理解它。

何谓规划?

就是信息安全部制定的《数据安全管理办法》,比如规定涉敏数据必须脱敏展现。

何谓监控?

就是信息安全部通过检查来发现是否有部门违反"涉敏数据需脱敏展现"的规则。

何谓执行?

这是数据治理定义中最容易混淆的地方,其不是我们一般操作意义上的执行概念,而是指权力、规则和决策的执行。

信息安全部需要有相应的权力去确保"涉敏数据必须脱敏展现"这个标准在整个组织内被遵守。

假如信息安全部通过日志监控发现有违规行为,执行流程是这样的:

① 生成问题清单并指派给数据源头的业务部门;

② 要求该部门在3天内完成整改;

③ 如果逾期未改,则将问题升级给部门主管。

这种确保、监督、审计、甚至在必要时进行问责的活动,就是数据治理层面的"执行",这些执行动作包括且不限于:

发出整改通知单,启动问题处理流程,进行安全责任认定,对绩效进行评估或者进行争议仲裁。

举一反三,你马上就能理解在数据质量,元数据,数据标准等领域的数据治理活动到底在干点啥了。

二、数据管理的本质

看了这个例子,可能你认为自己大概懂了数据治理,但数据管理又是什么呢?它跟数据治理又有什么区别呢?

首先我们看看"管理"是什么意思。

公司的业务管理部门,大多搞的就是管理工作,虽然他们管理的对象不是数据,大多是套餐,产品,资费啥的,但工作的本质跟数据管理是一样的。

你可以自己去查看公司各部门的职责描述,一般市场部门的工作职责是这样的:

1、贯彻落实集团战略和公司经营战略,组织开展市场研究,制定公司市场发展规划和市场经营策略

2、负责年度市场经营目标的制定和分解,组织、协调各分公司落实经营目标,并对落实情况实施监督考核

3、负责XX市场的拓展和保有,实施各类商用业务产品的营销管理,制定营销策略,组织实施全省性营销活动,评估审批各市公司营销方案,指导、检查各市公司的营销工作

4、负责公司市场经营情况的跟踪分析,做好竞争信息的收集和市场形势的预测,开展专题分析,为公司决策提供依据

管理工作总结下来,大致包含以下这些:

目标制定和分解、制定实施方案、资源协调和组织、过程监督和控制、团队建设和沟通、制定事实计划等等。

贵公司市场管理部门每天干的,都是这些事。

你把市场职责里的"产品"、"营销"、"竞争"等市场类关键词全部换成"数据质量"、"元数据","主数据"等数据类关键词,这个职责大概就成了数据管理部门的职责了。

搞懂了管理,我们来给出一个关于数据管理活动的通俗定义:

数据管理活动,就是要落实数据治理制定的那些数据制度、标准和流程,需要制定相应的工作目标、实施方案和工作计划,并组织相关人员来开展具体的实施工作。

三、数据管理和数据治理的区别

为了加深理解,这里以数据安全工作为例来说明数据治理和数据管理活动的区别:

数据治理活动,一定是先定个数据安全管理办法和规则,然后督促别人落实,比如数据安全管理办法规定"涉敏数据必须脱敏展现"。

数据管理活动,是指业务部门在开展数据使用的活动中,需要制定某个系统的"涉敏市场数据脱敏展现"的安全管控策略,确保数据在安全的前提下使用。

前者活动的目标是让数据得到正确的管理,具备业务无关性和通用性,后者活动的目标则是满足特定业务要求,释放数据价值。

前者都是高层次的管理活动,比如组织,制度,流程,标准和规则等,后者则是事务性管理活动,在数据治理制定的规则下,围绕具体事务,开展工作方案制定、组织实施、监督评估等。

前者一般需要业务部门的责任人、数据管理部门的责任人及公司高层领导的组织推动,后者参与主体一般是负责具体事务的数据管理员,比如数据质量管理员。

前者对后者提供指导,后者根据前者的要求组织实施,并将情况反馈给前者。

考虑到咱们都是搞IT男,我再来做个不恰当的类比:

数据治理就是抽象的类,具备通用性。

数据管理就是实例,具备事务性。

类规定了实例的形式,实例是类的实现。

四、数据管理和数据执行的区别

但事情还没完,在数据管理活动下面,还有数据执行活动,这个也特别容易混淆。

IT部门搞数据质量平台建设或运维配置的人员,经常称自己在做数据治理,这是不准确的。

他们做的甚至不是数据管理,而是在负责数据执行。

企业内凡是称呼为一线人员,生产人员,逻辑上干的活,都是执行类工作。

前面我讲过,市场部是个管理部门,如果公司压实了领域数据管理责任,那市场部干的数据类工作,大多就是在做数据管理。

而支撑市场部门开展数据工作的,就是数据执行部门。

下面,我还是以"涉敏数据必须脱敏展现"这个数据工作为例,来说明数据治理、数据管理和数据执行活动三者的区别。

信安部门制定了数据安全管理办法,明确了"涉敏数据必须脱敏展现" "涉敏数据必须加密存储"的要求,这是数据治理活动

市场部门组织开展涉敏数据使用活动,在方案中明确涉敏数据使用的具体方法,比如对数据进行分类分级,定义涉敏数据的具体使用流程,这是数据管理活动

市场部把这个需求提交给IT部门实现,IT部门基于业务部门制定的分级分类规则,对全量数据进行扫描打标,建立涉敏数据的审批流程和开发平台,这就是数据执行活动

再举个数据质量管理的例子。

公司数据治理办公室组织制定数据质量管理办法,明确数据质量管理的职责分工和要求,明确数据质量考核或者检查规则,这是数据治理活动。

市场部制定市场领域数据质量管控方案,例如个人号码数据一致性稽核规则,定期开展个人号码数据一致性评估,组织相关报部门进行一致性问题的原因分析,然后给出解决方案,这是数据管理活动。

IT部门按照市场部的规则对个人号码的数据一致性进行定期自动稽核并预警,根据市场部要求对不一致性数据进行修复,这是数据执行活动。

数据治理是定义的那个抽象的类,数据管理是基于类实现的实例代码,数据执行就是运行的程序。

五、概念模糊的后果

分不清楚数据治理、数据管理、数据执行三者的区别,会导致数据工作的混乱,下面是我的一些体会:

如果是要打破各部门数据壁垒,那么建立数据治理体系可能有点用,比如搞个数据治理委员会,成立专门的数据管理部,因为这个时候大家共识未成,权力结构的调整是第一位的。

如果部门壁垒不存在,但某个领域长期存在某个数据问题(数据质量,数据安全等等),那么建立数据治理组织一般没用,这个时候要加强的是某个领域的数据管理能力,比如给市场配专职数据管理专员。

如果业务部门数据管理意愿足够,但数据还是老出状况,这个时候,就要看看IT部门或者一线是不是出了状况,该加强的是数据执行能力。

现实世界里,没有那么多的地方需要高大上的企业数据治理,因为公司的组织架构设置大多时候就是权责匹配的,只有在流程的边界地带存在权力的真空,因此,老是要搞跨部门数据治理的企业,肯定是不正常的。

数据执行层面出问题应该是最多的,但如果问题特别严重,马上会体现在对生产的直接影响上,因此一般来讲,还是会得到重视和解决,除非公司不想活了。

最怕的,其实是数据管理出了问题,因为其对公司经营业绩的影响是潜移默化的,债欠多了,还是要还的。有的公司数字化水平高,关键强在管理,而不是某个领导牛逼或者IT能力突出,而这是很难COPY的。

比如针对领域数据开放不畅问题,领域管理部门完全可以不管,短期也没啥大影响,但今天慢8小时,明天慢16小时,积累多了,这个公司的数据管理水平就比对手落后一截,老板还在那纳闷呢,为啥别人总比我们快半拍,诸不知是领域数据管理部门不履职造成的。

比如针对市场数据使用的安全问题,市场管理部门可以不管,短期也没啥影响,但今天这个敏感数据没有被识别,然后在系统上明文展示,明天那个敏感数据未被识别,也在系统明文展示,然后某天暴雷。

比如针对供应链数据跟前端销售数据不一致问题,供应链管理部门也可以不管,短期看不到影响,但今天存货差了10个,明天差了30个,日复一日,这个不一致的问题会严重影响公司的财务报表。

近些年数据治理很热,但大家要的,其实不是数据治理本身,而是希望通过数据治理体系的构建,让数据管理活动创造更多的业务价值。

华为数据治理体系的核心,就是数据owner制度,它从顶层设计上规定了数据管理部门必须履行的职责,然后在流程上强控,从而让数据管理活动创造出更多的价值,压实好各数据管理部门的责任始终是关键。

但很多企业,虽然在数据治理的形式上做到了与华为一致,但其并没有建立起强势的数据文化,能够让每个领域认识到自己的职责不仅仅是传统领域的业务管理,还包括领域数据管理,并在开展经营活动中自发的履行这个管理职责。

那些仅靠IT部门支撑起来的数据治理体系,看起来是门面,但由于缺乏数据管理的坚强内核,那是相当的脆弱,风一吹就倒了,这也是数据治理备受诟病的根子原因。

因此,企业建个形式上的数据治理体系,对于公司一把手来说,那是分分钟的事情,但要实现数据管理人心的转变,那是个久久为功的工程。

所以,当老板直接来问你数据治理到底需要多少个人才能搞定的时候,你就应该知道这个事情完了。

希望对你有所启示。

图片

图片

公众号推送规则变了,如果您想及时收到推送,麻烦右下角点个在看或者把本号置顶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傅一平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值