PyTorch 全连接层(Fully Connected Layer)详解

全连接层(Fully Connected Layer),也被称为密集层(Dense Layer)或线性层(Linear Layer),是神经网络中最基本也是最重要的层之一。它在各种神经网络模型中扮演着关键角色,广泛应用于图像分类、文本处理、回归分析等各类任务中。本文将详细介绍全连接层的基本概念、PyTorch中的实现、输入和输出维度的变化、主要解决的问题以及最典型的应用场景。

基本概念

在全连接层中,每一个输入节点与输出节点之间都存在连接。假设有一个输入行向量 x \mathbf{x} x 和一个输出行向量 y \mathbf{y} y,为了匹配深度学习框架(如PyTorch)中常用的数据格式(输入为行向量或批次),全连接层的计算过程可以表示为:
y = x W T + b \mathbf{y} = \mathbf{x} \mathbf{W}^T + \mathbf{b} y=xWT+b
其中:

  • x \mathbf{x} x 是输入向量,在PyTorch中通常是一个行向量,维度为 1 × D i n 1 \times D_{in} 1×Din
  • W \mathbf{W} W 是权重矩阵,包含了所有连接的权重。
  • b \mathbf{b} b 是偏置向量,通常用于调整输出的线性变换。

权重矩阵 W \mathbf{W} W

  • 在PyTorch的 nn.Linear 模块中,权重矩阵 W \mathbf{W} W 的维度被定义为 D o u t × D i n D_{out} \times D_{in} Dout×Din,其中 D i n D_{in} Din 是输入特征的数量, D o u t D_{out} Dout 是输出特征的数量。
  • 每个元素 W i j W_{ij} Wij 表示输入特征 x j x_j xj 对输出特征 y i y_i yi 的影响程度。
  • 在计算时,我们需要将其转置 W T \mathbf{W}^T WT(维度为 D i n × D o u t D_{in} \times D_{out} Din×Dout)来与行向量 x \mathbf{x} x 相乘。
  • 在训练过程中,权重矩阵 W \mathbf{W} W 是通过反向传播算法进行更新的,目标是最小化损失函数,使得模型的预测结果尽可能接近真实值。

偏置向量 b \mathbf{b} b

  • 偏置向量 b \mathbf{b} b 的维度为 D o u t D_{out} Dout
  • 每个元素 b i b_i bi 用于调整输出特征 y i y_i yi 的线性变换,确保模型具有更好的拟合能力。
  • 偏置项的引入可以帮助模型更好地适应数据的分布,尤其是在输入特征为零时,偏置项可以提供非零的输出。

全连接层通过线性变换和非线性激活函数,对输入特征进行变换和抽象,提取更高层次、更有代表性的特征。

PyTorch 中的 nn.Linear

在PyTorch中,nn.Linear 是一个用于创建全连接层的类。它的构造函数如下:

class torch.nn.Linear(in_features, out_features, bias=True)
参数说明
  • in_features: 输入特征的数量,即输入向量的维度。
  • out_features: 输出特征的数量,即输出向量的维度。
  • bias(可选,默认为True):是否包含偏置项 b \mathbf{b} b
示例

以下是一个简单的示例,展示了如何在PyTorch中使用 nn.Linear 来创建和使用全连接层。

import torch
import torch.nn as nn
# 定义输入和输出的维度
input_dim = 4
output_dim = 2
# 创建一个全连接层
fc_layer = nn.Linear(input_dim, output_dim)
# 打印初始化的权重和偏置
print("Initial weights:", fc_layer.weight)
print("Initial bias:", fc_layer.bias)
# 创建一个输入向量 (批大小为1)
input_vector = torch.randn(1, input_dim)
# 通过全连接层计算输出
output_vector = fc_layer(input_vector)
print("Input vector:", input_vector)
print("Output vector:", output_vector)
输出结果

以下是对输出结果的详细解释:

权重矩阵和偏置向量

首先,让我们查看初始化的权重矩阵 W \mathbf{W} W 和偏置向量 b \mathbf{b} b

Initial weights: Parameter containing:
tensor([[ 0.1385, -0.3149, -0.2930, -0.1360],
        [-0.4598,  0.4449,  0.2633,  0.2245]], requires_grad=True)
Initial bias: Parameter containing:
tensor([-0.0132, -0.4703], requires_grad=True)
  • 权重矩阵 W \mathbf{W} W 的形状是 2 × 4 2 \times 4 2×4,表示有两个输出特征(每个输出特征对应一行),四个输入特征(每个输入特征对应一列)。
  • 偏置向量 b \mathbf{b} b 的形状是 2 2 2,表示每个输出特征有一个偏置。
输入向量

输入向量 x \mathbf{x} x 如下:

Input vector: tensor([[ 0.6784, -0.5674, -0.5408, -0.0243]])
  • 输入向量 x \mathbf{x} x 的形状是 1 × 4 1 \times 4 1×4,表示一个样本(批大小为1),包含四个特征。这是一个行向量
输出向量

输出向量 y \mathbf{y} y 如下:

Output vector: tensor([[ 0.4212, -1.1824]], grad_fn=<AddmmBackward0>)
  • 输出向量 y \mathbf{y} y 的形状是 1 × 2 1 \times 2 1×2,表示一个样本(批大小为1),包含两个输出特征。
计算过程解析

PyTorch中 nn.Linear 层的实际计算过程遵循 y = x W T + b \mathbf{y} = \mathbf{x}\mathbf{W}^T + \mathbf{b} y=xWT+b 的形式,以适配批处理(batch processing)的输入格式。让我们用单个样本的例子来逐步计算:

  1. 准备输入和参数

    • 输入向量 x \mathbf{x} x (行向量, 维度 1 × 4 1 \times 4 1×4):
      x = [ 0.6784 − 0.5674 − 0.5408 − 0.0243 ] \mathbf{x} = \begin{bmatrix} 0.6784 & -0.5674 & -0.5408 & -0.0243 \end{bmatrix} x=[0.67840.56740.54080.0243]
    • 权重矩阵 W \mathbf{W} W (维度 2 × 4 2 \times 4 2×4):
      W = [ 0.1385 − 0.3149 − 0.2930 − 0.1360 − 0.4598 0.4449 0.2633 0.2245 ] \mathbf{W} = \begin{bmatrix} 0.1385 & -0.3149 & -0.2930 & -0.1360 \\ -0.4598 & 0.4449 & 0.2633 & 0.2245 \end{bmatrix} W=[0.13850.45980.31490.44490.29300.26330.13600.2245]
    • 偏置向量 b \mathbf{b} b (维度 1 × 2 1 \times 2 1×2):
      b = [ − 0.0132 − 0.4703 ] \mathbf{b} = \begin{bmatrix} -0.0132 & -0.4703 \end{bmatrix} b=[0.01320.4703]
  2. 转置权重矩阵
    首先,我们将权重矩阵 W \mathbf{W} W 进行转置,得到 W T \mathbf{W}^T WT (维度 4 × 2 4 \times 2 4×2):
    W T = [ 0.1385 − 0.4598 − 0.3149 0.4449 − 0.2930 0.2633 − 0.1360 0.2245 ] \mathbf{W}^T = \begin{bmatrix} 0.1385 & -0.4598 \\ -0.3149 & 0.4449 \\ -0.2930 & 0.2633 \\ -0.1360 & 0.2245 \end{bmatrix} WT= 0.13850.31490.29300.13600.45980.44490.26330.2245

  3. 矩阵乘法 x W T \mathbf{x} \mathbf{W}^T xWT
    现在,我们将输入行向量 x \mathbf{x} x 与转置后的权重矩阵 W T \mathbf{W}^T WT 相乘。

    • 维度检查: ( 1 × 4 ) × ( 4 × 2 ) → ( 1 × 2 ) (1 \times 4) \times (4 \times 2) \rightarrow (1 \times 2) (1×4)×(4×2)(1×2)。维度匹配。
      x W T = [ 0.6784 − 0.5674 − 0.5408 − 0.0243 ] [ 0.1385 − 0.4598 − 0.3149 0.4449 − 0.2930 0.2633 − 0.1360 0.2245 ] = [ 0.4344 − 0.7121 ] \begin{aligned} \mathbf{x} \mathbf{W}^T &= \begin{bmatrix} 0.6784 & -0.5674 & -0.5408 & -0.0243 \end{bmatrix} \begin{bmatrix} 0.1385 & -0.4598 \\ -0.3149 & 0.4449 \\ -0.2930 & 0.2633 \\ -0.1360 & 0.2245 \end{bmatrix} \\ &= \begin{bmatrix} 0.4344 & -0.7121 \end{bmatrix} \end{aligned} xWT=[0.67840.56740.54080.0243] 0.13850.31490.29300.13600.45980.44490.26330.2245 =[0.43440.7121]
      (注:这里仅展示计算结果以保持简洁)
  4. 加上偏置向量 b \mathbf{b} b
    最后,将上一步的结果与偏置向量 b \mathbf{b} b 相加。PyTorch会使用广播(broadcasting)机制。
    y = x W T + b = [ 0.4344 − 0.7121 ] + [ − 0.0132 − 0.4703 ] = [ 0.4212 − 1.1824 ] \mathbf{y} = \mathbf{x} \mathbf{W}^T + \mathbf{b} = \begin{bmatrix} 0.4344 & -0.7121 \end{bmatrix} + \begin{bmatrix} -0.0132 & -0.4703 \end{bmatrix} = \begin{bmatrix} 0.4212 & -1.1824 \end{bmatrix} y=xWT+b=[0.43440.7121]+[0.01320.4703]=[0.42121.1824]
    这与PyTorch的输出结果完全一致:

    Output vector: tensor([[ 0.4212, -1.1824]], grad_fn=<AddmmBackward0>)
    

    通过这种方式解释,数学公式与PyTorch的代码实现和维度变化完全统一。

维度变化

torch.nn.Linear 的输入和输出维度是通过权重矩阵 W \mathbf{W} W 和偏置向量 b \mathbf{b} b 进行线性变换的结果。理解这些维度变化对构建和调试神经网络模型非常重要。

  1. 输入维度
    • 输入可以是一个二维张量(矩阵),其形状为 (N, D_in),其中 N 是批量大小(batch size),D_in 是输入特征的数量。
    • 输入也可以是一个一维张量(向量),其形状为 (D_in,),即单个样本的输入。PyTorch会自动将其视为 (1, D_in)
  2. 输出维度
    • 对于 (N, D_in) 的输入,输出将是一个二维张量,其形状为 (N, D_out),其中 D_out 是输出特征的数量。
    • 对于 (D_in,) 的输入,输出将是一个一维张量,其形状为 (D_out,)
示例

以下是一个具体的示例,展示了如何使用 nn.Linear 以及输入和输出的维度变化。

import torch
import torch.nn as nn
# 定义输入和输出的特征维度
input_dim = 4
output_dim = 2
# 创建一个全连接层
fc_layer = nn.Linear(input_dim, output_dim)
# 打印初始化的权重和偏置
print("Initial weights shape:", fc_layer.weight.shape)
print("Initial bias shape:", fc_layer.bias.shape)
# 创建一个输入向量(单个样本)
input_vector = torch.randn(input_dim)
print("\nInput vector shape:", input_vector.shape)
# 通过全连接层计算输出
output_vector = fc_layer(input_vector)
print("Output vector shape:", output_vector.shape)
# 创建一个输入矩阵(批量样本)
input_matrix = torch.randn(3, input_dim)
print("\nInput matrix shape:", input_matrix.shape)
# 通过全连接层计算输出
output_matrix = fc_layer(input_matrix)
print("Output matrix shape:", output_matrix.shape)
输出结果示例
Initial weights shape: torch.Size([2, 4])
Initial bias shape: torch.Size([2])

Input vector shape: torch.Size([4])
Output vector shape: torch.Size([2])

Input matrix shape: torch.Size([3, 4])
Output matrix shape: torch.Size([3, 2])
批量输入的计算过程

对于批量输入,计算公式保持一致,只是输入 X \mathbf{X} X 变成了一个矩阵,其中每一行代表一个样本。
Y = X W T + B \mathbf{Y} = \mathbf{X} \mathbf{W}^T + \mathbf{B} Y=XWT+B
假设输入矩阵 X \mathbf{X} X 3 × 4 3 \times 4 3×4(3个样本,每个样本4个特征),对应的输出矩阵 Y \mathbf{Y} Y 3 × 2 3 \times 2 3×2

  • X \mathbf{X} X 维度: 3 × 4 3 \times 4 3×4
  • W T \mathbf{W}^T WT 维度: 4 × 2 4 \times 2 4×2 (由 2 × 4 2 \times 4 2×4 W \mathbf{W} W 转置而来)
  • Y \mathbf{Y} Y 维度: ( 3 × 4 ) × ( 4 × 2 ) → 3 × 2 (3 \times 4) \times (4 \times 2) \rightarrow 3 \times 2 (3×4)×(4×2)3×2

计算过程如下:
Y = [ x 11 x 12 x 13 x 14 x 21 x 22 x 23 x 24 x 31 x 32 x 33 x 34 ] [ W 11 W 21 W 12 W 22 W 13 W 23 W 14 W 24 ] + [ b 1 b 2 b 1 b 2 b 1 b 2 ] \mathbf{Y} = \begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \end{bmatrix} \begin{bmatrix} W_{11} & W_{21} \\ W_{12} & W_{22} \\ W_{13} & W_{23} \\ W_{14} & W_{24} \end{bmatrix} + \begin{bmatrix} b_1 & b_2 \\ b_1 & b_2 \\ b_1 & b_2 \end{bmatrix} Y= x11x21x31x12x22x32x13x23x33x14x24x34 W11W12W13W14W21W22W23W24 + b1b1b1b2b2b2
其中,偏置向量 b \mathbf{b} b (维度 1 × 2 1 \times 2 1×2) 会被广播到每一行上进行相加。这个公式与前面单个样本的计算方式完全一致,也解释了为什么PyTorch等框架偏好将输入处理为行向量或批次。

训练过程中的权重和偏置的优化

在训练过程中,权重矩阵 W \mathbf{W} W 和偏置向量 b \mathbf{b} b 是通过反向传播算法进行更新的。反向传播算法通过以下步骤优化这些参数:

  1. 前向传播:计算模型的预测输出。
  2. 计算损失:使用损失函数衡量模型预测值与真实值之间的差异。
  3. 反向传播:计算损失函数相对于每个参数的梯度。
  4. 参数更新:根据梯度信息,使用优化器(如SGD、Adam等)更新权重矩阵 W \mathbf{W} W 和偏置向量 b \mathbf{b} b
    通过多次迭代和参数更新,模型的预测性能会逐步提高,最终收敛到一个使损失函数最小化的状态。

多层全连接网络与通用近似定理

多层全连接网络(Multi-layer Fully Connected Network),尤其是深度神经网络(Deep Neural Network,DNN),因其强大的表达能力和灵活性,被广泛应用于各种复杂的任务中。一个特别重要的理论是通用近似定理(Universal Approximation Theorem),它表明多层全连接网络可以逼近任意复杂的函数。

通用近似定理
定理概述

通用近似定理指出,一个包含至少一个隐藏层且具有足够数量神经元的前馈神经网络,在给定适当的激活函数(如Sigmoid函数或ReLU函数)的情况下,可以逼近任意的连续函数。

数学表述

f f f 是一个定义在 R n \mathbb{R}^n Rn 上的连续函数,对于任意的误差 ϵ > 0 \epsilon > 0 ϵ>0,存在一个包含至少一个隐藏层的前馈神经网络 g g g,使得对于所有的 x ∈ R n x \in \mathbb{R}^n xRn,有:
∣ f ( x ) − g ( x ) ∣ < ϵ |f(x) - g(x)| < \epsilon f(x)g(x)<ϵ

实际应用与实现
网络结构

一个典型的多层全连接网络结构如下:

  • 输入层:接受输入数据。
  • 隐藏层:包括多个全连接层,每个层后接一个非线性激活函数。
  • 输出层:输出最终的预测结果。

例如,一个简单的三层全连接网络,若遵循PyTorch的计算方式,可以表示为:
h 1 = σ ( x W 1 T + b 1 ) h_1 = \sigma(\mathbf{x} \mathbf{W}_1^T + \mathbf{b}_1) h1=σ(xW1T+b1)
h 2 = σ ( h 1 W 2 T + b 2 ) h_2 = \sigma(\mathbf{h}_1 \mathbf{W}_2^T + \mathbf{b}_2) h2=σ(h1W2T+b2)
y = h 2 W 3 T + b 3 \mathbf{y} = \mathbf{h}_2 \mathbf{W}_3^T + \mathbf{b}_3 y=h2W3T+b3
其中 σ \sigma σ 是激活函数,如ReLU。

示意图

下图展示了一个包含输入层、两个隐藏层和输出层的多层全连接网络结构。
在这里插入图片描述

要在PyTorch中实现一个类似于上图的三层全连接神经网络,我们可以创建一个自定义的神经网络类。以下是一个示例代码,展示如何使用PyTorch构建一个具有3个输入节点、两个隐藏层(分别有5个和4个节点)以及2个输出节点的神经网络。

import torch
import torch.nn as nn
import torch.optim as optim
# 定义一个多层全连接神经网络
class SimpleNeuralNet(nn.Module):
    def __init__(self, input_size, hidden_sizes, output_size):
        super(SimpleNeuralNet, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_sizes[0])
        self.fc2 = nn.Linear(hidden_sizes[0], hidden_sizes[1])
        self.fc3 = nn.Linear(hidden_sizes[1], output_size)
        self.relu = nn.ReLU()
    def forward(self, x):
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return x
# 定义网络结构参数
input_size = 3
hidden_sizes = [5, 4]
output_size = 2
# 创建网络实例
model = SimpleNeuralNet(input_size, hidden_sizes, output_size)
# 打印网络结构
print(model)
# 创建一些示例输入数据
x = torch.randn((1, input_size))
# 前向传播
output = model(x)
print("\nInput: ", x)
print("Output: ", output)
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 示例训练过程
# 生成一些示例目标数据
target = torch.randn((1, output_size))
# 前向传播
output = model(x)
# 计算损失
loss = criterion(output, target)
print("\nLoss: ", loss.item())
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("Updated Output: ", model(x))
代码解析
  1. 定义神经网络类SimpleNeuralNet类继承自nn.Module,在__init__中定义网络层,在forward中定义数据流。
  2. 创建网络实例:根据定义的网络结构参数创建一个网络实例model
  3. 前向传播:创建示例输入数据x,通过网络进行前向传播,得到输出output
  4. 定义损失函数和优化器:使用均方误差损失函数MSELoss和随机梯度下降优化器SGD
  5. 示例训练过程:进行一次完整的前向传播、损失计算、反向传播和参数优化。

全连接层最典型的应用

全连接层是神经网络中最基本和广泛使用的一种层类型,主要用于以下几个方面:

  1. 图像分类
    • 在卷积神经网络(CNN)中,全连接层通常用于网络的最后几层,将卷积层提取到的特征图(feature map)展平(flatten)后,映射到各个类别上。
import torch.nn.functional as F
class SimpleCNN(nn.Module):
    def __init__(self, num_classes=10):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        # 假设输入是 32x32 图像, 经过两次 2x2 池化后, 尺寸变为 8x8
        self.fc1 = nn.Linear(32 * 8 * 8, 128)
        self.fc2 = nn.Linear(128, num_classes)
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 32 * 8 * 8)  # 展平张量
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x
  1. 文本分类
    • 在自然语言处理(NLP)任务中,全连接层常用于将文本表示(如RNN或Transformer输出的特征)映射到类别标签上。
class SimpleRNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(SimpleRNN, self).__init__()
        self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, num_classes)
    def forward(self, x):
        h0 = torch.zeros(1, x.size(0), hidden_size).to(x.device)
        out, _ = self.rnn(x, h0)
        out = out[:, -1, :]  # 取最后一个时间步的隐藏状态
        out = self.fc(out)
        return out
  1. 回归任务
    • 在预测连续值的任务中,如房价预测、股票价格预测等,全连接层能够将输入特征映射到目标值。
class SimpleRegression(nn.Module):
    def __init__(self, input_size, output_size):
        super(SimpleRegression, self).__init__()
        self.fc1 = nn.Linear(input_size, 64)
        self.fc2 = nn.Linear(64, output_size)
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x
  1. 多层感知器(MLP)
    • 多层感知器是最基础的神经网络结构之一,完全由多个全连接层组成。它适用于各种表格数据任务。
class MLP(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, output_size)
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

总结

全连接层是神经网络中非常重要的组成部分,广泛应用于各种任务中。它主要用于特征变换、模式识别、分类和回归问题。理解全连接层的工作原理和应用场景,对于构建和优化神经网络模型至关重要。

参考链接

PyTorch概述
Pytorch :张量(Tensor)详解
PyTorch 卷积层详解
PyTorch 全连接层(Fully Connected Layer)详解
PyTorch 池化层详解

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值