摘 要 学生成绩预测旨在利用学生的相关信息预测其在未来的学业表现.随着校园信息化建设的持续推进,校园网络认证系统越来越完善,各高校逐步积累了丰富的学生校园上网行为数据.考虑到人的行为表现和学习能力密切相关,以校园上网行为感知为切入点,通过挖掘学生的上网行为日志来预测他们的成绩.为此,收集构建了一个同时包含学生校园上网行为和成绩数据的真实数据集,并通过数据分析证明两者之间确实存在一定的关联性.在此基础上,提出了一个端到端的双层自注意力网络(dual-level self-attention network, DEAN),引入级联式的自注意力机制来分别提取学生每一天的局部上网行为特征和长时间的全局上网行为特征,更好地解决了长行为序列建模问题.此外,通过多任务学习策略在统一的框架下同时解决面向不同专业的学生成绩预测问题,并设计了基于学生排名差的代价敏感损失来进一步提升方法的性能.实验结果表明:相比于传统的序列建模方法,所提出的方法具有更好的预测精度.
关键词 学生成绩预测;校园上网行为感知;双层自注意力网络;多任务学习;代价敏感学习
教育是立国之本,强国之基.随着互联网技术的快速发展,收集教育相关数据变得更为方便快捷,对教育大数据的分析、挖掘和应用是教育发展的重要需求和必然趋势[1].学生成绩预测,又称为学生学业表现预测,是指利用学生的相关信息预测其在未来的学业表现[2],包括课程成绩、学期末综合成绩以及是否存在退学风险等.借助学生成绩预测技术,教师可以清晰洞察学生的学习状态与质量,并以此为基础开展差异化教学,满足学生的个性化学习需求,真正达到“以评促学”的目的.此外,学生成绩预测技术也有助于高校开展学业预警工作,特别是根据对学生成