matplotlib嵌入pyqt5的窗口中

本文介绍了如何在PyQt5应用程序中利用matplotlib库创建图形界面,展示如何在一个窗口内嵌入静态和动态图表,以及添加导航工具栏。首先导入必要的模块,然后通过FigureCanvasQTAgg和NavigationToolbar2QT构建画布和工具栏。在小组件中使用QVBoxLayout管理布局,并在两个不同的小组件中分别绘制静态和动态图表。动态图通过定时器实现数据更新,从而达到动态效果。最后,程序展示了如何在GUI中集成这些功能并运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

需求

由于在一些情况下,使用matplotlib做图比用qtchart更方便,所以就对matplotlib嵌入pyqt5进行学习,现记录一下。

运行效果

运行效果
在上面的图中,先使用qt设计师,新建一个widget窗口,然后在里面放两个groupbox,然后整个窗口选择的是垂直布局。

然后在代码中,将两种情况下的图,添加到对应的groupbox中。
其中第一个groupbox为包含两个子图的情况,其中第二个图为动图。下面的groupbox为包含一个子图的情况,且添加了toolbar。

总代码

import numpy as np
from PyQt5 import QtWidgets
from PyQt5.QtCore import QTimer

from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas, NavigationToolbar2QT as NavigationToolbar
from matplotlib.figure import Figure

import sys
from ui_matplotlib_test import Ui_Form

class Mytest(QtWidgets.QWidget, Ui_Form):
    def __init__(self):
        super(Mytest, self).__init__()
        self.setupUi(self)
        self.init()
        self.setWindowTitle("matlplotlib学习")

    def init(self):
        self.static_canvas = FigureCanvas(Figure(figsize=(5, 3)))
        layout = QtWidgets.QVBoxLayout(self.groupBox_1)
        layout.addWidget(self.static_canvas)
        self._static_ax1,self._static_ax2 = self.static_canvas.figure.subplots(2,1)
        t = np.linspace(0, 10, 501)
        self._static_ax1.plot(t, np.tan(t), ".")

        self.timer1 = QTimer()
        self.timer1.start(100)
        self.i = 0
        self.t = []
        self.s = []
        self.timer1.timeout.connect(self.refresh_plot)

        self.canvas_2 = FigureCanvas(Figure())
        tool_bar = NavigationToolbar(self.canvas_2, self.groupBox_2)
        layout2 = QtWidgets.QVBoxLayout(self.groupBox_2)
        layout2.addWidget(self.canvas_2)
        layout2.addWidget(tool_bar)
        self.axes2 = self.canvas_2.figure.subplots()
        self.axes2.plot(t,np.sin(t)*np.cos(2*t))

    def refresh_plot(self):
        self.i += 0.01
        self.t.append(self.i)
        self.s.append(np.sin(2*np.pi*self.i))
        self._static_ax2.cla()
        self._static_ax2.plot(self.t,self.s)
        self.static_canvas.draw()

if __name__ == '__main__':
    from PyQt5 import QtCore

    QtCore.QCoreApplication.setAttribute(QtCore.Qt.AA_EnableHighDpiScaling)
    app = QtWidgets.QApplication(sys.argv)
    myshow = Mytest()
    myshow.show()
    sys.exit(app.exec_())

详细解释

  1. 需要在pyqt5中使用matplotlib,首先需要导入一些模块,代码为:
    from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas, NavigationToolbar2QT as NavigationToolbar from matplotlib.figure import Figure
  2. 由于使用了numpy,所以要导入该模块。使用到pyqt5中的qwidegt模块,需要导入。需要定时对图进行刷新,所以导入Qtimer模块。导入sys模块,导入用qt设计师搭建好的ui文件。
  3. 新建类来继承ui文件,并进行初始化。
  4. 初始化图。首先定义一个FigureCanvasQTAgg类,代码为self.static_canvas = FigureCanvas(Figure(figsize=(5, 3)))FigureCanvasQTAgg就是一个渲染器,渲染器的工作就是drawing,执行绘图的这个动作。渲染器是使物体显示在屏幕上,也即是将一个figure渲染的canvas变为一个Qt widgets
  5. 然后给界面中的groupBox_1,添加一个垂直布局管理器,代码为layout = QtWidgets.QVBoxLayout(self.groupBox_1)。接着把渲染器添加到该布局中,代码:layout.addWidget(self.static_canvas)
  6. 从渲染器中的画布figure中,获取子布,也就是Axes(也可以看作为包括所有axis的一套坐标轴)。这里获取两个子布,代码为self._static_ax1,self._static_ax2 = self.static_canvas.figure.subplots(2,1)。子布在self.static_canvas的渲染器中的画布figure中的分布为两行,一列。
  7. 生成用于画在子图self._static_ax1中的x数据,代码为t = np.linspace(0, 10, 501)
  8. 在子图self._static_ax1中画图,其中y数据为正切函数。代码为self._static_ax1.plot(t, np.tan(t), ".")
  9. 定义需要定时刷新子图self._static_ax2的相关参数,然后将定时器与刷新该子图的函数self.refresh_plot连接。
  10. 函数self.refresh_plot为每调用一次,给子图self._static_ax2 的x数据添加一个数值,同时更新对应的y数值。然后清空该子图,代码self._static_ax2.cla()。清空后将新的xy数据重新在该子图中画好,代码self._static_ax2.plot(self.t,self.s)最后需要更新该子图所在画布的渲染器,代码为self.static_canvas.draw(),如果不使用该代码,则该子图不会主动更新。
  11. 再生成一个新的画布渲染器self.canvas_2,代码为self.canvas_2 = FigureCanvas(Figure())
  12. 这里生成一个与该画布渲染器相关联的工具栏,并将self.groupBox_2作为其父控件,代码为tool_bar = NavigationToolbar(self.canvas_2, self.groupBox_2)
  13. 接着同样给self.groupBox_2设置一个垂直布局管理器,代码为layout2 = QtWidgets.QVBoxLayout(self.groupBox_2)
  14. 将新生成的画布渲染器和工具栏依次添加到该布局管理器中。
  15. 从该画布渲染器中获取子图,代码为self.axes2 = self.canvas_2.figure.subplots(),并将xy数据给该子图,代码为self.axes2.plot(t,np.sin(t)*np.cos(2*t))
  16. 最后部署运行该文件的代码。

要点

  1. 引入模块
  2. 获取画布渲染器
  3. 对要展示画布的控件添加布局管理器,并将画布渲染器添加进去
  4. 获取子图
  5. 将数据画在子图中

参考

matplotlib的官网示例

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值