自然语言处理中的下游任务与机器翻译
在自然语言处理(NLP)领域,下游任务和机器翻译是两个重要的研究方向。本文将介绍一些常见的下游任务,如情感分析、释义识别等,并探讨机器翻译的相关内容。
常见下游任务
- CoLA数据集上的BERT微调
- 可以通过
BERT_Fine_Tuning_Sentence_Classification_GPU.ipynb
查看在CoLA数据集上微调的BERT模型。 - 加载CoLA数据的代码如下:
- 可以通过
#@title Loading the Dataset
#source of dataset : https://nyu-mll.github.io/CoLA/
import pandas as pd
df = pd.read_csv("in_domain_train.tsv", delimiter='\t', header=None,
names=['sentence_source', 'label', 'label_notes', 'sentence'])
df.shape
- 加载预训练的BERT模型:
#@title Loading the Hugging Face Bert Uncased Base Model
from transformers import B